Hereditary palmoplantar keratoderma “clinical and genetic
differential diagnosis”

Tomo SAKIYAMA, Akiharu KUBO
Department of Dermatology, Keio University School of Medicine, Tokyo, Japan

ABSTRACT

Hereditary palmoplantar keratoderma (PPK) is a heterogeneous group of disorders characterized by hyperkeratosis of the palm and the sole skin. Hereditary PPK are divided into four groups – diffuse, focal, striate and punctate PPK – according to the clinical patterns of the hyperkeratotic lesions. Each group includes simple PPK, without associated features, and PPK with associated features, such as involvement of nails, teeth and other organs. PPK have been classified by a clinically based descriptive system. In recent years, many causative genes of PPK have been identified, which has confirmed and/or rearranged the traditional classifications. It is now important to diagnose PPK by a combination of the traditional morphological classification and genetic testing. In this review, we focus on PPK without associated features and introduce their morphological features, genetic backgrounds and new findings from the last decade.

Key words: diffuse, focal, punctate, striate, transgrediens.

INTRODUCTION

Palmoplantar keratoderma (PPK) is a heritable or acquired disorder characterized by abnormal hyperkeratotic thickening of the palm and sole skin. In a narrow sense, PPK implies hereditary PPK, the phenotype of which usually appears at an early age. Hereditary PPK are divided into two categories: PPK without associated features and PPK with associated features, such as lesions of the non-volar skin, nails, hair, teeth and involvement of other organs. Clinical diagnosis of PPK is sometimes difficult because of genetic heterogeneity, clinical heterogeneity and the probable existence of as yet unidentified PPK. Genetic heterogeneity means phenotypic similarities among several PPK caused by mutations in different genes, and clinical heterogeneity means distinct phenotypes caused by different mutations of the same genes. Because most of the causative genes have been identified in hereditary PPK within the last two decades, genetic testing is indispensable for the diagnosis of PPK, in combination with clinical-based morphological classifications.

DIFFERENTIAL DIAGNOSIS OF PPK

In the clinic, acquired PPK are important in the differential diagnoses of hereditary PPK, especially for hereditary PPK without associated features. Acquired PPK usually occur later in life and may be due to many causes, such as keratoderma climactericum, drugs, malnutrition, chemicals, systemic disease, malignancy, dermatoses, infections and idiopathies. For example, acquired PPK due to contact dermatitis (Fig. 1a) and psoriasis vulgaris confined to the palmoplantar area (Fig. 1b) are comparatively common and are sometimes difficult to distinguish from hereditary PPK. A skin biopsy is essential in diagnosing these cases. Lack of a family history is not necessarily evidence of an acquired PPK, because autosomal recessive PPK can appear sporadically from parent carriers and because autosomal dominant PPK can also occur sporadically by de novo mutations.

Careful observations, history taking, skin biopsy and genetic testing are important in diagnosing hereditary PPK. Hereditary PPK are divided morphologically into four types – diffuse, focal, striate and punctate – according to the mode and distribution of hyperkeratosis. This review is intended to provide an overview of the distinctive clinical phenotypes of hereditary PPK, especially PPK without associated features, and introduces recent progress in our understanding of their molecular pathogenesis. A list of known subtypes of PPK without associated features is shown in Table 1 for the diffuse type and in Table 2 for other types.

DIFFUSE PPK WITHOUT TRANSGREDIENS

Diffuse PPK shows diffuse hyperkeratosis over the palms and soles. One of the key points for a clinical diagnosis is the presence or absence of transgrediens, an expansion of the disease phenotype to the dorsal surfaces of the hands and feet, inner wrists and the Achilles tendon area. Diffuse PPK without transgrediens include Vörner PPK (Mendelian Inheritance in Man [MIM] no. 144200) and diffuse PPK caused by heterozygous distinct mutation of DSG1 (MIM no. 148700). Both are
autosomal dominant traits but can be distinguished by histological findings and the responsible genes. Vörner PPK is diffuse PPK (Fig. 2) caused by mutations in KRT1 or KRT9 and histologically shows epidermolytic hyperkeratosis.2,4–6 Unna–Thost PPK (MIM no. 600962) was recognized as a non-epidermolytic form of diffuse PPK that resembles Vörner PPK clinically. However, Küster et al.7 investigated the offspring of the original family diagnosed by Unna and Thost and found epidermolytic hyperkeratosis by histology. Genetic testing revealed the p.R162W mutation in KRT9 in the original family evaluated by Unna and Thost and the p.N160I mutation in KRT9 in the original family evaluated by Vörner, and both mutations are located on the coil-1A segment at the beginning of the central rod domain of KRT9.5,6 Thus, it seems likely that Unna–Thost PPK and Vörner PPK are the same entity.

Diffuse PPK caused by DSG1 mutations show enlarged intercellular spaces and partial separation of keratinocytes in spinous and granular cell layers on histology.3,8 Mutations in DSG1 show clinical heterogeneity; striate PPK, diffuse PPK, focal PPK and SAM syndrome, described below, are all caused by different mutations of DSG1.3,9–11

DIFFUSE PPK WITH TRANSGREDIENS

Diffuse PPK with transgrediens include several diseases: mal de Meleda (MIM no. 248300), acral keratoderma, and PPK of Nagashima (MIM no. 615598), Bothnian (MIM no. 600231), Gamborg-Nielsen (MIM no. 244850), Greither (MIM no. 144200), and Sybert.12–20 Among these, Nagashima PPK and Bothnian PPK are specifically characterized by a whitish spongy change in palmoplantar hyperkeratotic skin upon water exposure.16,21 Nagashima PPK shows autosomal recessive behavior and is the most common PPK in Japan and China, estimated at 1.2/10 000 and 3.1/10 000, respectively, according to a cohort study.21 Nagashima PPK was first described as a PPK showing a similar distribution to, but a considerably milder disease phenotype than, mal de Meleda by Masaji Nagashima in the Japanese published work in 1977.22 Mal de Meleda is the most severe and progressive hyperkeratosis among the diffuse PPK and leads to constricting bands, spontaneous amputation and/or flexion contractures (Fig. 3).22 Nagashima PPK shows a non-progressive, mild hyperkeratosis with skin redness and does not show constricting bands, spontaneous amputation or flexion contractures (Fig. 4a).14,15 In 2013, Kubo et al. identified, by whole-exome sequencing, biallelic loss-of-function mutations in SERPINB7, which encodes a cytoplasmic member of the serine protease inhibitor superfamily, as a cause of Nagashima PPK,21 confirming that Nagashima PPK is genetically distinct from mal de Meleda, which is caused by biallelic mutations in SLURP1.23 The whitish spongy change upon water exposure in Nagashima PPK has been suggested to result from enhanced water permeation into the stratum corneum, damaged by overactivated proteases due to the lack of SERPINB7 (Fig. 4b).21

Bothnian PPK was first described in 1994 as an autosomal dominant form of diffuse non-epidermolytic PPK, which has a high prevalence of 0.3–0.55% in the two northernmost
<table>
<thead>
<tr>
<th>Mode of inheritance</th>
<th>Causative genes</th>
<th>Pathological findings</th>
<th>Manifestation of PPK</th>
<th>Transgrediens</th>
<th>Hyperhidrosis</th>
<th>Whitish change upon water exposure</th>
<th>Development on other areas</th>
<th>Spontaneous amputation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vömer² (Unna–Thost) Diffuse PPK with DSG1 mutations³</td>
<td>AD</td>
<td>KRT1,⁴ KRT9 ⁵,⁶</td>
<td>Enlarged intercellular spaces and partial separation of keratinocytes</td>
<td>Thick hyperkeratosis</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nagashima¹⁴,¹⁵ AR</td>
<td>SERPINB7²¹</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Mild hyperkeratosis with redness</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>Knees, elbows, and Achilles tendon area</td>
<td>–</td>
</tr>
<tr>
<td>Bothnian¹⁶ AD</td>
<td>AQP5²⁴</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Mild to thick hyperkeratosis</td>
<td>–</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Greither¹⁹ AD</td>
<td>KRT1²⁷</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Thick hyperkeratosis</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>Elbows, knees, flexural areas, and Achilles tendon</td>
<td>+</td>
</tr>
<tr>
<td>Sybert²⁰ AD</td>
<td>Unknown</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Thick hyperkeratosis</td>
<td>+</td>
<td>Not described</td>
<td>–</td>
<td>Natal cleft, groin, elbows, knees, posterior aspects of forearms, and anterior aspects of legs</td>
<td>+</td>
</tr>
<tr>
<td>Mal de Meleda¹² AR</td>
<td>SLURP1²³</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Severe hyperkeratosis</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>Knees and elbows, perioral erythema, and periorbital erythema</td>
<td>Occasionally</td>
</tr>
<tr>
<td>Gamborg Nielsen¹⁷,¹⁸ AR</td>
<td>SLURP1²⁶</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Thick hyperkeratosis</td>
<td>+ (1 of 4)</td>
<td>Not described</td>
<td>+ (1 of 15)²⁶</td>
<td>Only knuckle pads on the dorsa of the fingers</td>
<td>Not described</td>
</tr>
<tr>
<td>Acral keratoderma¹³ AR</td>
<td>Unknown</td>
<td>Non-epidermolytic hyperkeratosis</td>
<td>Thick diffuse and striate hyperkeratosis</td>
<td>+</td>
<td>Not described</td>
<td>–</td>
<td>Linear hyperkeratotic lesions over knees, elbows, ankles, and Achilles tendon area</td>
<td>+</td>
</tr>
</tbody>
</table>

AD, autosomal dominant inheritance; AR, autosomal recessive inheritance; PPK, palmoplantar keratoderma.
Table 2. Classification of focal, striate and punctate PPK

<table>
<thead>
<tr>
<th>Type of PPK</th>
<th>Mode of inheritance</th>
<th>Responsible gene (gene symbol or name)</th>
<th>Characteristic clinical manifestation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal PPK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Focal PPK</td>
<td>AD</td>
<td>KRT6c, TRPV3</td>
<td>Multiple tiny punctate keratosis on the palms and soles appear during late childhood to adolescence and increase in number with age to form larger lesions. Type IA and IB are classified by the responsible gene.</td>
</tr>
<tr>
<td>Striate PPK</td>
<td>AD</td>
<td>DSG1, DSP, KRT1, AAGAB</td>
<td>Skin thickening is prominent in a linear pattern along the flexor aspects of the fingers and over pressure points on the soles. Types I–III are classified by the responsible gene.</td>
</tr>
<tr>
<td>Punctate PPK</td>
<td>AD</td>
<td>COL14A1, KRT1, SLURP1, C</td>
<td>Tiny keratotic spines on the palms and soles begin during the early 20s. Histological examination reveals columnar parakeratosis.</td>
</tr>
<tr>
<td>Punctate PPK</td>
<td>AD</td>
<td>AQP5</td>
<td>Small keratotic papules which mainly involve the margins of the hands and feet appear in adolescence or adult life. Histological examination reveals degeneration of elastic fibers.</td>
</tr>
</tbody>
</table>

AD, autosomal dominant inheritance; AR, autosomal recessive inheritance; PPK, palmoplantar keratoderma.

Provinces of Sweden, situated to the west and northwest of the Gulf of Bothnia. Bothnian PPK resembles Nagashima PPK in terms of its mild hyperkeratosis with transgrediens and the whitish spongy changes upon water exposure (Fig. 5). In 2013, Blaydon et al. identified heterozygous missense mutations in AQP5, encoding water-channel protein AQP5, in affected members of seven Swedish families, three British families and one Scottish family. It was suggested from protein modeling that the amino acid substitution found in Bothnian PPK may increase the diameter of the constriction point of the water channel of AQP5. Thus, the Bothnian PPK sequence variants could have a direct influence on AQP5 gating and/or water flow through the channel.

Whitish spongy changes in the palms are also observed in other disease conditions, such as aquagenic wrinkling of the palms, a rare condition characterized by excessive wrinkling, palmar edema and whitish papules after brief exposure to water (Fig. 6). This condition has been reported mostly in patients and carriers for cystic fibrosis (MIM no. 219700), caused by mutations of CFTR. There are several hypotheses as to the disease mechanism of aquagenic wrinkling of the palms, including dysfunction of the TRPV4 channel in the keratinocytes of cystic fibrosis patients that results in dysregulated water influx through eccrine ducts.

Gamborg-Nielsen PPK shows a similar morphological phenotype to mal de Meleda but has been reported to have less severe hyperkeratosis and no nail deformities or distant keratosis, except for the knuckle pads. Thus, the two disorders have been considered to be independent diseases. In 2014, Zhao et al. performed genetic analysis of 15 individuals with Gamborg-Nielsen PPK from nine families. Of these, 14 were described previously by Gamborg-Nielsen et al. and were born in the northernmost counties of Sweden. They found a homozygous mutation, c.43T>C, of SLURP1 in 14 individuals from the northernmost counties of Sweden and a compound heterozygous mutation, c.280T>A and c.43T>C, of SLURP1 in one individual from southern Sweden. Because the c.43T>C mutation had been reported in mal de Meleda, Gamborg-Nielsen PPK is considered an allelic variant of mal de Meleda.

The individual with the compound heterozygous mutation of c.280T>A and c.43T>C in SLURP1 showed whitish spongy changes upon water exposure, typically not observed in Gamborg-Nielsen PPK or mal de Meleda.

Greither PPK and Sybert PPK are both autosomal dominant forms of diffuse PPK with transgrediens and progressive features with age. Sybert PPK shows more severe and a wider range of hyperkeratosis than does Greither PPK. Greither PPK is caused by a KRT1 mutation – Greither PPK, Vörner PPK, striate PPK, epidermolytic hyperkeratosis (MIM no. 113800), ichthyosis histrionis (MIM no. 146590) and cyclic ichthyosis with epidermolytic hyperkeratosis (MIM no. 607602) show clinical heterogeneity of KRT1 mutations – but the gene locus for Sybert PPK is unknown. Acral keratoderma is an autosomal recessive PPK and shows a characteristic morphology and distribution of hyperkeratosis: diffuse and striate hyperkeratosis of the palms and soles and linear hyperkeratotic lesions over the elbows, knees and Achilles tendon area.
FOCAL PKK

Painful circumscribed hyperkeratosis, like calluses, on the bodyweight-loading area of the soles is characteristic of focal PPK (Fig. 7a). Focal PPK is known for its major symptom of pachyonychia congenita (MIM no. 167200, 167210, 615726, 615728), caused by heterozygous mutations of KRT6A, KRT6B, KRT16 or KRT17. Heterozygous mutations in KRT6A, KRT6B, KRT16, or KRT17 are known to cause focal PPK. While hypertrophic nail dystrophy and several ectodermal features are complicated in pachyonychia congenita patients, specific mutations in KRT16 (MIM no. 613000) cause focal PPK with or without minimal changes in the nails and other ectodermal tissues. Mutations in KRT6C (MIM no. 615735) and a specific mutation in DSG1 (MIM no. 148700) also cause focal PPK with or without minimal changes in the nails and other ectodermal tissues.

In 2015, a gain-of-function mutation in TRPV3 was identified as the cause of focal PPK (MIM no. 616400) in a Chinese family by whole-genome sequencing. TRPV3 belongs to a large family of calcium-permeable transient receptor potential ion channel membrane proteins, and the mutation in TRPV3 was suggested to disrupt the balance between keratinocyte proliferation and differentiation. Several mutations in TRPV3 have also been reported as the cause of Olmsted syndrome (MIM no. 615494), which shows mutilating diffuse PPK and perioral hyperkeratotic plaques, supporting the importance of TRPV3 activity in keratinocyte differentiation.

STRIATE PPK

Striate PPK shows skin thickening, which is prominent in a linear pattern along the flexor aspects of the fingers and over pressure points on the soles (Fig. 7b). It shows autosomal dominant inheritance and is divided into three types according to the responsible gene: DSG1 (MIM no. 148700), DSP (MIM no. 612900), and KRT1 (MIM no. 607654). Heterozygous mutations in DSG1 cause striate, diffuse and focal PPK. While DSG1 is a major component of desmosomes in the upper layer of the epidermis, and loss of DSG1 expression on the cell membrane leads to weakened intercellular adhesion. Histopathological features of PPK with DSG1 mutations show characteristic clues of varying degrees of intercellular space enlargement and partial separation of keratinocytes in the spinous and granular cell layers.

In 2013, Samuelov et al. reported that patients who had homozygous DSG1 mutations causing striate PPK via consanguineous marriage revealed a new syndrome, comprising severe dermatitis, multiple allergies and metabolic wasting (SAM) syndrome (MIM no. 615508). The clinical manifestations were congenital ichthyosiform erythroderma, focal and striate PPK, and hypotrichosis. They had multiple food allergies, elevated immunoglobulin E levels and recurrent infections with malabsorption. Regarding the pathoetiology, the lack of membrane expression of DSG1 may result in a compromised epidermal barrier, resulting in sensitization to multiple environmental allergens. Netherton syndrome (MIM no. 256500) and peeling skin syndrome caused by corneodesmosin deficiency (MIM no. 270300), in which congenital insufficiency of the stratum corneum barrier causes erythroderma and multiple allergies.

Recently, milder cases of SAM syndrome were also reported with PPK, dermatitis and multiple allergies but without hypotrichosis, metabolic wasting and severe recurrent infection.

PUNCTATE PPK

Punctate PPK is clinically classified into three groups: Buschke-Fischer-Brauer type (MIM no. 148600, 614936),
porokeratotic type (MIM no. 175860) and acrokeratoelastoidosis (MIM no. 101850).41–44 All show autosomal dominant inheritance, whereas the clinical manifestations of each are different and characteristic. Buschke–Fischer–Brauer type PPK shows multiple tiny punctate keratoses on the palms and soles (Fig. 7c).41,42 It appears during late childhood to adolescence, and the lesions increase in number with advancing age and form larger lesions. Heterozygous mutations in AAGAB, encoding \(\gamma \)- and \(\varepsilon \)-adaptin-binding protein p34, and COL14A1, were identified as causes of Buschke–Fischer–Brauer PPK.45–47 Porokeratotic-type PPK shows tiny keratotic spines on the palms and soles, beginning during an individual’s early 20s, and histological examination reveals columnar parakeratosis.43 Acrokeratoelastoidosis is characterized by small keratotic papules that primarily involve the margins of the hands and feet, appearing during adolescence or adult life, and histological findings reveal degeneration of elastic fibers.44 The gene(s) responsible for porokeratotic-type PPK and acrokeratoelastoidosis remain unknown.

DIAGNOSTIC APPROACH TO HEREDITARY PPK

To diagnose hereditary PPK without associated features, first, we should examine the involvement of other skin areas, such as nails, hair, teeth and other organs, to exclude PPK with associated features. There are many PPK with associated features and we introduce several of them below.

1. **Huriez syndrome** (MIM no. 181600), the causative gene of which is still unknown, shows diffuse and transgrediens PPK, scleroatrophy of the distal extremities, nail changes, growth delays affecting the hands and increased risk of squamous cell carcinoma.48

2. Mutations in GJB2, encoding connexin 26, cause PPK with neurosensory deafness (MIM no. 148350), KID syndrome (MIM no. 148210), HID syndrome (MIM no. 602540), Bart–Pumphrey syndrome (MIM no. 149200) and Vohwinkel syndrome (MIM no. 124500), all of which show sensorineural deafness and diffuse PPK with transgrediens.48–50 KID
syndrome is a diffuse PPK associated with ichthyosiform erythroderma in infants, progressive verruciform hyperkeratosis, recurrent infections and increased risk of squamous cell carcinoma. A variant form of Vohwinkel syndrome with ichthyosis (MIM no. 604117) is caused by mutations in LOR, which is sometimes called loricin keratoderma.

3 Clouston syndrome (MIM no. 129500), caused by mutations in GJB6 encoding connexin 30, shows moderate to severe PPK with dystrophy of the nails and defects of the hair.

4 Olmsted syndrome – the autosomal dominant form (MIM no. 614594) is caused by mutations in TRPV3 and the X-linked form (MIM no. 300918) caused by a mutation in MBTPS2 shows diffuse and mutilating PPK and perioral hyperkeratotic plaques with severe pruritus. Diffuse alopecia, constriction of the digits, onychodystrophy and squamous cell carcinomas arising in the keratotic areas have also been reported.

5 Naegeli–Franceschetti–Jadassohn syndrome (MIM no. 161000), caused by mutations in KRT14, shows diffuse PPK, the absence of papillary relief, nail dystrophies, anhidrosis, dental defects, and hyperpigmentation and loss of pigmentation.

6 Papillon–Lefèvre syndrome (MIM no. 245000), caused by mutations in CTSC encoding cathepsin C, shows diffuse and transgressive PPK, periodontitis leading to tooth loss, and recurrent cutaneous and systemic infections. Haim–Munk syndrome (MIM no. 245010) is also caused by mutations in CTSC and resembles Papillon–Lefèvre syndrome, but is complicated by arachnodactyly, acroosteolysis, pes planus and finger deformities.

7 KLICK syndrome (MIM no. 601952), caused by mutations in POMP, shows diffuse, transgressive PPK with linear hyperkeratotic plaques and congenital ichthyosis.
8 Odontoonychodermal dysplasia (MIM no. 257980), caused by mutations in WNT10A, is an autosomal recessive ectodermal dysplasia characterized by diffuse PPK, hypodontia, hypertrichosis and dystrophic nails.48

9 Schöpf-Schulz-Passarge syndrome (MIM no. 224750), caused by mutations in WNT10A, resembles odontoonychodermal dysplasia, but is complicated by cysts affecting the eyelids and an increased risk of skin tumors.48

Pachyonychia congenita, caused by mutations in KRT6A, KRT6B, KRT16 or KRT17, shows focal or diffuse PPK, hypertrophic nail dystrophy and oral leukokeratosis, sometimes with a variety of epidermal cysts.32

Tylosis with esophageal cancer (MIM no. 148500), caused by mutations in RHBDF2, is characterized by focal PPK, esophageal cancer and oral precursor lesions, such as leukoplakia.53

11 Mutations in the genes encoding desmosomal plaque proteins cause striate PPK with associated features. Carvajal syndrome (MIM no. 605676), caused by mutations in DSP, encoding desmoplakin, shows striate PPK with cardiomyopathy and woolly hair.49 In some cases, tooth agenesis is a complication (MIM no. 615821).54 Naxos disease (MIM no. 601214), caused by mutations in JUP, encoding plakoglobin, shows diffuse PPK, cardiomyopathy and woolly hair.48 Both skin fragility syndrome (MIM no. 604536), caused by mutations in PKP1, and skin fragility

wolly hair syndrome (MIM no. 607655), caused by mutations in DSP, show PPK.55,56

CONCLUSIONS AND FUTURE PERSPECTIVES

In the clinical diagnosis of PPK, we should pay attention to the nails and hair disorders, intraoral conditions, other skin manifestations, hearing acuity, and past and/or family history of recurrent infection and squamous cell carcinoma to distinguish PPK with or without associated features. Morphological features and the distribution of hyperkeratinization (i.e. diffuse, focal, striate and punctate patterns) are helpful in the differential diagnosis. In the case of diffuse PPK, the presence/absence of transgrediens and whitish change upon water exposure are also helpful in narrowing down the differential diagnosis. Genetic testing should be performed to confirm the clinical diagnosis, which is especially helpful for identifying PPK with associated features for the prevention of recurrent infections and the development of squamous cell carcinoma.

There are still uncharacterized hereditary PPK. When genetic testing fails to detect causative mutations and when clinical manifestations are distinct from known PPK, whole-exome sequencing can be used to detect novel causative gene(s) of a novel type of PPK. In the hunt for new causative genes, it is important to recruit individuals who have mutations in the same causative gene and therefore show the identical phenotype, so phenotypic classifica-
ceptions by clinicians and the development of a network to find rare and undiagnosed PPK patients will become even more important.

ACKNOWLEDGMENT: This work is partly supported by Japan Agency for Medical Research and Development.

CONFLICT OF INTEREST: None declared.

REFERENCES

10. Rickman L, Simrak D, Stevens HP et al. N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease

Figure 7. (a) Focal palmoplantar keratoderma (PPK), caused by a KRT6C mutation, showing painful circumscribed hyperkeratosis, such as calluses on the bodyweight-loading area of the soles. (b) Striate PPK, caused by a DSG1 mutation, showing skin thickening, with a prominent linear pattern along the flexor aspects of the fingers. (Photos kindly provided by Dr Toshifumi Nomura.) (c) Buschke-Fischer-Brauer PPK, caused by an AAGAB mutation, showing multiple tiny punctate keratoses on the palms and soles. (Photos kindly provided by Dr Toshifumi Nomura.)

© 2016 Japanese Dermatological Association
Hereditary palmoplantar keratoderma

© 2016 Japanese Dermatological Association

