Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
A novel point mutation of keratin 17 (KRT17) in a Japanese family with pachyonychia congenita type 2: an RNA-based genetic analysis using a single hair bulb

Gene Corner

A 12-year-old Japanese girl came to our clinic because of her thickened nails and palmoplantar hyperkeratosis with a complaint of plantar pain during exercising (Fig. 1a,c). She did not have hair abnormalities or eruptions on her arms or legs. Her teeth and tongue were normal at that time, but she had been born with natal teeth. Fungi were not identified in samples from nails or scales of her palms and soles. The family pedigree showed six affected persons over three generations (Fig. 1a), an inheritance pattern that is compatible with autosomal dominance. The affected adults had multiple subcutaneous nodules on the flexor sides of their arms (Fig. 1d).

For genetic analysis, one hair bulb and 3 mL peripheral blood were obtained from the patient and from family members. Each hair bulb was immersed in RNA later solution (Applied Biosystems, Foster City, CA, U.S.A.) immediately after plucking and was stored at 4°C until analysis. Total RNA was extracted from each hair bulb and cDNA was synthesized using a High Pure RNA paraffin kit (Roche Diagnostics, Basel, Switzerland) and ReverTra Ace reverse transcriptase (Toyobo Co., Ltd, Osaka, Japan) the mutation rate of which is about 1.56%. RNA purified from one hair bulb was insufficient for quantitative analysis but was sufficient for two to three rounds of cDNA synthesis by scaling down the reaction. The reaction products were used as templates for polymerase chain reaction (PCR) amplification of KRT17 and KRT6B cDNA. The 1413-bp nucleotides covering the full coding sequence of the KRT17 cDNA were amplified into overlapping upper (F1) and lower (F2) DNA fragments by PCR using the following primers: 5‘-ATGACACCTCCTCATCGCCAGTT-3’ and 5‘-TCTTCTCATAC-TGTCACGATCTCGTG-3’ for F1, and 5‘-GAGGAGCTGGCCTACCTGA-3’ and 5‘-AAGCATTGGGAAGGACTGA-3’ for F2. PCR cycling conditions for F1 or F2 were 94°C for 2 min; 40 cycles of 94°C for 15 s, 65°C or 60°C, respectively, for 30 s, and 68°C for 1 min, with a final extension step at 68°C for 10 min. The analysis of KRT6B cDNA and KRT17 genomic DNA was as reported previously.1,2 The protocol of this study was approved by the ethical committee of the Hyogo College of Medicine, and informed consent was obtained from all family members enrolled for the analysis and from healthy volunteers used as controls.

Results and discussion

Direct sequencing of KRT17 and KRT6B cDNA derived from the single hair bulb of II-2 revealed a heterozygous T to A substitution at nucleotide c.263, resulting in the missense mutation p.M88K in KRT17 (Fig. 1e). No other substitutions or deletions/insertions of bases were found in the coding sequence of KRT17 and no mutation was detected in the KRT6B cDNA of II-2. The same mutation of KRT17 was found in cDNAs derived from individual hair bulbs of affected family members. The mutation was verified by direct sequencing of exon 1 in the KRT17 genomic DNA. The mutation-dependent loss of an NheIII recognition site in exon 1 was not found in genomic DNA from 100 unaffected healthy volunteers (data not shown). The specific substitution p.M88K has not been reported as a single nucleotide polymorphism (SNP) in the Entrez SNP (http://www.ncbi.nlm.nih.gov/sites/entrez?db=snp) or the dbProP (http://dbprop.nirs.go.jp/Prop/index.html) databases.

The novel mutation p.M88K is located in the helix initiation motif (HIM) of KRT17, where 13 of the reported 14 mutations of KRT17 in PC-2 have been mapped, and the residue M88 of the HIM is also a mutation hotspot of other keratin disorders (http://www.interfil.org/).3 The mutation p.M88T at the same codon was reported in two previous patients with PC-2.4,5 Follicular keratoses reported in those patients with p.M88T were absent in our patients, and instead, the focal palmoplantar keratoderma seen in our patients was not documented in those earlier patients.

For mutation analysis of KRT17 and KRT6B, we used RNA isolated from individual hair bulbs, because KRT17 has two pseudogenes and KRT6B has several orthologues.6,7 King et al.8

DOI: 10.1111/j.1365-2133.2008.08684.x

Pachyonychia congenita type 2 (PC-2) (MIM 167210; Jackson–Lawler syndrome) is an autosomal dominant keratin disorder characterized by hypertrophic nail dystrophy with multiple pilosebaceous cysts. Genetic defects in PC-2 have been correlated with two different keratin genes: keratin 17 (KRT17) and keratin 6b (KRT6B).1,2 We report here a novel missense mutation, methionine at codon 88 to lysine (p.M88K), of KRT17, which was detected using RNA from only an individual hair bulb.

Patient and methods

© 2008 The Authors

Journal Compilation © 2008 British Association of Dermatologists • British Journal of Dermatology 2008
and Tazo- Vega et al. have shown that RNA from 10–30 hair bulbs is sufficient for mutation analysis of COL4A5 cDNA. Hair bulbs are more easily obtained and biologically safer to be handled than are blood samples. Plucking a few hair bulbs is not very painful and is less stressful for children. The method used in the present study requires only a single hair bulb for genetic analysis, although it will be necessary to repeat the analysis to avoid potential artifactual errors introduced by the reverse transcription or PCR steps, if genomic DNA is not used for confirmation.

Acknowledgments

The authors are most grateful to the patients, family members and healthy volunteers for their cooperation and thank members of the Joint-Use Research Facilities of the Hyogo College of Medicine for their technical assistance. This work was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research and for Young Scientists, by a High-Tech Research Center Grant.

References


© 2008 The Authors
Journal Compilation © 2008 British Association of Dermatologists • British Journal of Dermatology 2008

Accepted for publication: 27 March 2008

Key words: hair bulb, keratin 17, pachyonychia congenita, point mutation, RNA

Conflicts of interest: none declared.