Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
The SKIN

A CLINICOPATHOLOGIC TREATISE

By ARTHUR C. ALLEN, M.D.

Associate Pathologist, Memorial Hospital; Associate Attending Pathologist, Memorial Cancer Center, New York City; Associate Professor of Pathology, Cornell University Medical School, Sloan-Kettering Division; Consultant Pathologist, Bronx Veterans Administration Hospital; Consultant Pathologist, New York Infirmary

With 495 Full-Page Illustrations

Frontispiece in Color

ST. LOUIS • THE C. V. MOSBY COMPANY

1954
CHAPTER VII. DERMATOSES OF ALLERGIC ORIGIN

Definitions
Responsible Agents and Occupations
The Allergic, Urticarial, and Eczematous Dermatoses
Atopic Dermatitis
Infectious Eczematous Dermatitis
Contact Dermatitis
Allergy to Drugs
Parenterally Administered Drugs
Fixed Drug Eruption
Therapy of Allergic Dermatitis
Desensitization
Haloema
Haloema Dermatitis
Atarbitro (Mepacrine) Dermatitis
Physical Agents
Sunlight
Allergy to Physical Agents
Porphyria
Porphyria Cutanea Tarda
Congenital Porphyria
Acute Porphyria
Chronic Porphyria
Hydroxy Aminoleucine
Urticaria Solaris
Chronic Polymorphous Light Eruptions
Urticaria
Urticaria Pigmentosa
Angioedema (Quincke’s Disease, Giant Urticaria, Angioneurotic Urticaria)
Altered Reactivity to Cold
Altered Reactivity to Heat

CHAPTER VIII. VESICULAR DERMATOSES

Cleavage Vesiculations
Pemphigus
Pemphigus Vulgaris
Pemphigus Foliaceus
Pemphigus Erythematosus
Benign Chronic Familial Pemphigus
Epidermolysis Bullosa
Dermatitis Herpetiformis
Impetigo Contagiosa
Erythemas
Erythema Multiforme
Erythema Multiforme Exudatum Major (Stevens-Johnson Syndrome)
Behcet's Syndrome
Ulcer Vulvae Acetab
Effects of Viruses

CHAPTER IX. NONVESICULAR VIRUS AND RICKETSIAL DISEASES

Nonvesicular Virus Diseases
Measles
German Measles
Erythema Infectiosum
Exanthema Subitum
Cat-Scratch Disease
Dengue
Ricketsial Diseases
Epidemic Typhus
Brill’s Disease
Marine Typhus
Spotted Fever Group
Rocky Mountain Spotted Fever
Pierre Boutonneuse
South African Tick-Bite Fever
Tick-Bite Rickettsioses in India and Russia
North Queensland Tick Typhus
Rickettsialpox
Scrub Typhus
Skin
Eschar
Maeula of Scrub Typhus
Maeula of Louis-Borre Typhus
Maeula of Rocky Mountain Spotted Fever
Specificity of Typhus Nodule of Maeula
Extracutaneous Lesions
Pathogenesis
Eschar
Evidence of Hypersensitivity Reaction in Viscera
Pathogenic Concept of the Rickettsioses
Miscellaneous Rickettsioses
Q Fever
Trench Fever
Colorado Tick Fever

CHAPTER X. PYODERMAS AND SPECIFIC BACTERIAL INFECTIONS

Pyodermas
Bacterial Infections
General Features
Complications From Antimicrobial Therapy
Furuncle
Carbuncle
CONTENTS

XII

Trombodiasis 506
Tungiasis 506
Peléchiasis 508
Cimicosis 510
Beelings 510
Pullicosis 510
Pleas (Pulex Irritanus) 511
Ixodiasis 511
Wood ticks 511
Brown stick Moth and Caterpillar Dermatitis 511
Arachnidism 512
Mylus 512
Reactions to Arthropods 513
Helminthes 520
Phylumnathines 520
Trematoda 520
Schistosome Dermatitis 520
Seabather's Eruption 522
Liver Fluke 524
Cestoda 524
Nematellinathes 526
Eubcles 526
Ascarisiasis 526
Oxyuriasis 526
Ancelestomiasis 528
Creeping Eruption 528
Trichiasis 528
Filariosis 530
Wageneria Bascrofti 532
Lolosis 532
Onchoerccosis 534
Dracunculiasis 534

CHAPTER XV. PSYCHOCUTANEOUS DISORDERS AND MISCELLANEOUS DESQUAMATIVE DERMATOSES 538

Psychocutaneous Lesions 539
Illusion of Parasitosis 540
Dermatitis Faeitia 540
Neurotic Excitiation 542
Neurodermatitis 542
Prurigo Nodularis 548
Seborrhoeic Dermatitis 548
Keratodermia Palmatis et Plantaris 552
Plantar and Palmar Punctate Keratosis 552
Exfoliative Dermatitis of Wilson and Brocq 554

CHAPTER XVI. THE VITAMINS 556

Vitamin A 556
Darier's Disease 558
Licen Spinulosus 560
Keratosis Pilaris 562
Psoriasis Rubra Pilaris 563
Pseudoporphyderma Collis 563
Ichthyosis 563
Hypervitaminosis A 564
Vitamin B 566
Pellagra 566
Sprue 566

Kwaschiorcor Dermatosis 569
Vitamin B (Pyrrodoxine) 572
Acrolysis (Pink Disease) 572
Pantothenic Acid 574
Inositol 574
Pana-Aminobenzoic Acid (PABA) 574
Biturc 576
Choline 576
Folic Acids and Vitamin B 576
Vitamin C 576
Vitamin D 580
Vitamin E 580
Vitamin K 580

CHAPTER XVII. VASCULAR DISORDERS 583

Introduction 583
Thromboangiitis Obliterans 585
Raynaud's Disease 586
Livedo Reticularis 588
Temporal Arteritis 589
Allergic Angiitis 589
Acute Allergic Angiitis 589
Relation of Allergic Angiitis to Classical Periarthritis Nodosa 594
Thrombocytopenic Vascular Angiitis 596
Erythema Elevatum Diuturnum 598
Sclerodema Atrophic Syndrome 598
Erythromelalgia 600
Symmetrical Erythema of Palms and Soles 602
Diseases of Veins 602
Lymypheduma 604
Hereditary Lymphedema of the Legs (Milroy's Disease) 605
Arteriovenous Fistula 606
Trench Foot 606
Ergotism 608
Sickle Cell Anaemia 608

CHAPTER XVIII. ABNORMALITIES OF PIGMENTATION 612

Pigmentation 612
Pigmentary Disorders 613
Freckles 613
Metallic Pigmentations 614
Chrysisis 614
Bismuth 614
Mercury 614
Arsenic 614
Tattoos 614

Angiogrophy 616
Pigmentation of Oral Mucosa 620
Rothe's Melanosis 620
Erythrose Periurethrale Pigmentaire de Brocq 622
Incontinentia Pigmenti 622
Leukoderma 624
Nevus Acanthicus 626
Addison's Disease 626
Chloasma 626
Albright's Syndrome 626
Hemochromatosis 629

Material may be protected by copyright law (Title 17, U.S. Code)
CHAPTER XVI. DISORDERS OF CUTANEOUS APPENDAGES

Nails
Congenital Abnormalities of Nails
Abnormalities of Hair
Alopecia
Acquired Alopecia
Psuedopelade
Pillocellitits Decalvans
Chronic Lupus Erythematosus
Mechanical
Miscellaneous Causes of Alopecia
Premature Alopecia
Alopecia Areata
Alopecia of Neurodermatitis
Radiation
Atomic Bomb
Diseases of Sebaceous and Sweat Glands
Sebaceous Glands
Acne
Dermatitis Papillaris Capillitii
Sweat Glands
Hyperhidrosis
Miliaria
Miliaria Profunda
Anhidrosis, Chronicis, Hemidrosis
Urticaria, Phosphorhidrosis, Bromidrosis
Hidradenitis Suppurativa
Granulosis Rubra Nasi
Fol-Peircey Disease
Hydrocystoma
Ureia and Ureic Siamritis
Congenial Exterdental Defect

CHAPTER XX. NON-NEOPLASTIC LESIONS OF ORAL MUCOSA

Dermatoses With Associated Involvement of Mucous Membranes
Transitory Benign Plaques of Tongue
Burning Tongue
Hairy Black Tongue
Wrinkled Tongue

CHAPTER XXI. CLASSIFICATION OF TUMORS OF THE SKIN

Verrucae (Warts)
CUTANEOUS Horn
Calisuses and Planter Warts
Corns
Condyloma Acuminatum
Molluscus Caragalosum
Acanthosis Nigricans
Neval Unius Lateris
Cysts
Sebaceous Cysts
Epidermal Inclusion Cysts
Dermoid Cysts
Neurocutaneous Syndromes
Tumors of Sebaceous Glands
Tuberous Sclerosis
Tumors of Hair Follicles
Tumors of Sweat Glands
"Mixed" Tumors of Sweat Glands
Sweat Gland Carcinomas
So Called "Self-Healing Squamous Cell Carcinomas"
Thyroglossal Cysts and Sinuses
Branchial Fistulas and Cysts
Auricular Fistulas

CHAPTER XXII. CARCINOMAS OF THE SKIN AND MUCOSA AND MISCELLANEOUS TUMORS OF THE ORONASAL CAVITY

Precancerous Lesions
Senile Keratosis
Aneural Keratoses
Keratosiis Vulvae
Xeroderma Pigmentosum
Erythraemia of Queyrat
Bowen's Disease
Mammary and Extramary Paget's Disease
Radio dermatitis
Radiation
Histogenesis of Radiation Effects
Effects of Radiation
Summary of Cutaneous Radiation Effects

CONTENTS

630
Glossitis Rhombien Medium
Chelitis Glandularis
Congenital Leukoplakia
Chelitis Exfoliativa
Moller's Glossitis
Electrolytic Erosion
Sjogren's Syndrome
Aphthous Stomatitis
Periodontitis Acute Necrotic Recurrent
Vincet's Stomatitis
Stomatitis Nociva
Noma
Detonation Cysts of Life
Fournier's Disease

703
Verrucae (Warts)
Cutaneous Horn
Calisuses and Planter Warts
Corns
Condyloma Acuminatum
Molluscus Caragalosum
Acanthosis Nigricans
Neval Unius Lateris
Cysts
Sebaceous Cysts
Epidermal Inclusion Cysts
Dermoid Cysts
Neurocutaneous Syndromes
Tumors of Sebaceous Glands
Tuberous Sclerosis
Tumors of Hair Follicles
Tumors of Sweat Glands
"Mixed" Tumors of Sweat Glands
Sweat Gland Carcinomas
So Called "Self-Healing Squamous Cell Carcinomas"
Thyroglossal Cysts and Sinuses
Branchial Fistulas and Cysts
Auricular Fistulas

763
Precancerous Lesions
Senile Keratosis
Aneural Keratoses
Keratosiis Vulvae
Xeroderma Pigmentosum
Erythraemia of Queyrat
Bowen's Disease
Mammary and Extramary Paget's Disease
Radio dermatitis
Radiation
Histogenesis of Radiation Effects
Effects of Radiation
Summary of Cutaneous Radiation Effects

784
CONTENTS

CHAPTER XXV. XANTHOMATOSIS AND LIPID AND NONLIPID HISTIOCYTOPSE - 945

Cutaneous Lipidoses - 945
Xanthomatoses - 915
Xanthoma Dimplecorum - 915
Xanthelasma - 918
Xanthoma Tuberosum Multiplex - 920
Juvenile Xanthoma - 922
Xanthoma Disseminatum - 922
Histiocytopses - 922
Hand-Schüller-Christian Disease - 924
Malignant Histiocytopsis (Letterer-Siwe Disease) - 926
Eosinophilic Granuloma of Bone - 930
Relationship of Letterer-Siwe Disease, Hand-Schüller-Christian Disease, and Eosinophilic Granuloma - 932
Lipid Histiocytopsis - 934
Niemann-Pick Disease - 934
Gaucher's Disease - 934

CHAPTER XXVI. TUMORS OF MESENCHYMAL TISSUES - 938

Lipomas - 938
Embryonal Lipomas - 940
Fibromas - 940
Pedunculated Fibroma (Fibroma Polle) - 940
Fibrosarcomas - 940
Myxomas - 946
Dermatofibrosarcoma Proterbers - 950
Desmoid Tumors - 950
Tumors of Muscle - 950
Dermal Angiomyoma - 950
Granular Myohlastoma - 956
Schwannoma (Neurilemmoma) - 960
Neurofibroma - 964
Café-au-Lait Spots - 964

CHAPTER XXVII. TUMORS OF VESSELS - 967

Lymphangiomatas - 967
Lymphangiomata Simplex - 967
Lymphangiomata Cutis Circumscriptum - 967
Lymphangiomata Cavernosum - 970
Lymphangiomata Cystica Cutis - 970
Hemangiomas - 970
Capillary Hemangiomas - 970
Sclerosing Hemangiomas - 974
Cavernous Hemangiomas - 974
Angioma Rareformes - 976
Angiokeratoma - 976
Hemangioendotheloma - 976
Therapy of Hemangiomas - 976
Spider Telangiectases - 976
Juvenile Nasopharyngeal Angiofibroma - 978
Oder-Rendu-Parkes Weber Syndrome - 986
Neurocutaneous Syndromes - 989
Sturge-Weber-Dimitri Syndrome - 989
Van Hippel-Lindau Disease - - - - - - 990
Maffucci's Syndrome - - - - - - - - - 990
Gliomas Tumor - - - - - - - - - 990
Hemangiopericytoma - - - - - - - - - 992
Angiosarcoma - - - - - - - - - 994
Kaposi's Sarcoma - - - - - - - - - 994
Relationship of Kaposi's Sarcoma to Malignant Lymphomas - - - - 996
Postmastectomy Lymphangiosarcoma - - - - - - 1000

CHAPTER XXXIV. TUMORS OF HEMATOPOIETIC TISSUES - - - - - - - - 1008
Cutaneous Involvement in Malignant Lymphomas - - - - 1008
Mycosis Fungoides - - - - - - - - - - 1010
Cutaneous Manifestations of Lymphomas - - - - - - - - - 1024
Leukemia - - - - - - - - - - - - 1024
Hodgkin's Disease - - - - - - - - - - 1030
Lymphosarcoma and Reticulum Cell Sarcoma - - - - 1036
Chloroma - - - - - - - - - - - - 1036
Therapy of Malignant Lymphomas - - - - - - - - - 1036

Material may be protected by copyright law (Title 17, U.S. Code)
nderlying the nail is the hyponychium. The nail matrix is the posterior nail fold continuous with the eponychium. The nail plate or true nail rests on the nail bed. Normally, fine longitudinal lines traverse the nail plate and fit into corresponding grooves (and the dermal papillae) of the nail bed. These lines, which become more pronounced with age, may be observed on both surfaces of the nail. The dermal papillae are flattened over the nail bed but cylindrical at the root and the free edge (Plate 15 D). The dermis is directly fused with the periosteum of the phalanx (Plate 15 B and C).

ReGENERation.—Regeneration of a lost fingernail takes from 100 to 160 days. The period of regeneration is about three times as long for the toenails. The nail regenerates by growing forward from the nail root. The nail plate immediately underlyng the dorsal portion of the nail bed grows simultaneously from behind forward, as can be judged not only from the changing position of a subungual blood clot, but also from the anteriorly advancing mark such as a blotch of silver nitrate placed on the bed after a nail plate has been removed. In other words, the nail plate does not grow by "gilding" over or covering a static nail bed but in conjunction with corresponding growth. There is a type of leukonychia due to a fungus (leukonychia trichophytica) in which the involved white portion remains stationary and does not advance to the free edge. In this form the fungus involves the lower portion of nail which originates not from the matrix but the keratinized nail bed.

Many types of changes that occur in the nail plate furnish important clues in the diagnosis of disease. These changes include fine pitting of the surface, Beau's lines, discolorations, dysplasias, thickenings, and spontaneous loss of the nails. General debilitation, psoriasis, reaction to Atubrine, fungi, congenital disorders, idiopathic pigmentary disturbances, and neoplasia may produce characteristic changes in the nails which are discussed in the appropriate sections.

Nerves

The cutaneous nerves, particularly the sensory components, constitute a complex system in contrast to the sensory innervation of other organs. This complexity of nerve fibers and nerve endings subserves the wide variety of stimuli received from both the external and internal environment. The stimuli include heat, cold, pain, touch, and pressure. These are predominantly external stimuli, but the internal environment with psychic stimuli, as well as controlled or involuntary excitation of the cutaneous vessels and glands as in blushing, shock, and many other aspects of homeostatic readjustment, is also involved in the neural activities of the skin. The cutaneous structures concerned with neural influence include not only blood vessels, sweat glands, arrectores pilorum, and hair follicles, but also the epidermis and even the collagen of the dermis by virtue of cholinergic, urticarial, and serotonergic trophic responses among others. Clearly, the comprehension, control, or modification of the responses to this broad and potent gamut of stimuli is of pivotal importance in the ultimate therapy of a tremendous number of eruptions, particularly the psychodynamic and allergic varieties.

The segmental distribution of the cutaneous sensory nerves is fairly constant in all individuals so that from the location of an anesthetic area the particular nerve involved can be indicated, although some overlapping of the sensory innervation exists. This overlapping of innervation is greater in some areas (the forearm) than in others (the fingertips). Moreover, the concentration of sensory nerves varies, there being many more nerve endings in the region of the lips, the nipples, the glans penis, and the finger pads than in the skin generally. In any area of skin the branches of nerves, both medullated and nonmedullated, ramify as plexuses into the skin from radial directions, so that the likelihood of anesthesia from a surgical incision is minimized. The recovery of sensation in split-thickness grafts has been found to be partial and patchy, usually appearing between the seventh and ninth postoperative week. Naturally the degree of recovery of sensation is dependent on the relative absence of scar tissue and the integrity of the nerves in the recipient area.

The nerves may be identified even with routine stains (hematoxylin and eosin) as far as the level of the junction of the upper and middle thirds of the dermis (Plate 20 C). Beyond this level special nerve stains are necessary for the demonstration of the terminal axon fibers as they enmesh and innervate hair follicles, sweat glands, sebaceous glands, arrectores pilorum, and vessels.
A. NAIL OF ADULT with central focus of common form of leukonychia.

B. LONGITUDINAL SECTION OF NAIL from 3-month human fetus.

C. LONGITUDINAL SECTION OF NAIL from 4-month human fetus.

D. MATRIX and ROOT OF NAIL. Disturbances in this critical area are responsible for many types of changes in the nail plate. (From 4-month fetus.)
They are necessary also for certain of the nerve endings, particularly those beaded endings which subserve pain (and itching), the Ruffini spindles, and also the Merkel-Ranvier corpuscles. However, special stains are not at all necessary for the demonstration of such endings as Pacinian corpuscles, Meissner corpuscles, the end bulbs of Krause, taste buds, and neuromuscular spindles, all of which are quickly detectable with simple hematoxylin and eosin or other routine stains (Plate 16). The nerve endings are found in the upper cutis and epidermis, except for the Pacinian corpuscles, which are usually located in the subcutaneous fat. The individual nerve endings are considered in the following paragraphs.

Meissner Corpuscles.—The Meissner corpuscles, which average about 100 microns in diameter (0.02 to 0.045 mm.), are located in the immediate subepidermal portion of most of the papillae of the skin particularly of the ball of the digits (about 23 per square millimeter) and also of the palms and soles. They may be easily recognized in routinely prepared sections colored with ordinary stains such as hematoxylin and eosin (Plate 16 A). Silver stains emphasize details of the transverse nerve fibers. These fibers, interspersed with vesicular nuclei, are nearly folded like a packet of wool, forming the terminus of a medullated nerve fiber. The capsule of the corpuscle appears to be formed from the nerve sheath, but the nerve enters the corpuscle as a naked axon cylinder. Somewhat similar formations (lamines folliculaires) are noted in the depths of intradermal nevi and have been specifically interpreted, in our opinion, as evidence of the neurogenic nature of these nevi (Plate 392 C and D). The Meissner corpuscles receive sensations of touch.

Merkel-Ranvier Corpuscles.—The Merkel-Ranvier corpuscles are poorly defined, meniscus-shaped nerve endings which are stated to be located directly within the epidermis as the arborization of a dermal nerve fiber. They appear to be invisible with ordinary stains but are said to be argyrophilic. Their precise function is not known, but they are thought to represent tactile nerve endings. There has been much confusion regarding the relationship of the Merkel-Ranvier corpuscles to the cellules claires of Masson. The evidence currently suggests that these clear cells are not nerve endings but are simply modified basal cells. There are also controverted interpretations of the so-called Langerhans' cells, which are referred to by Masson (1951) as "worn-out melanoblasts" (worn out "clear cells") but about which there is considerable doubt as to even their cellular nature (Maximov and Bloom, 1953).

Pacinian Corpuscles.—The Pacinian corpuscles measure approximately 1 to 4.5 mm. in diameter, so that they may actually be seen grossly. They are found predominantly not only in the lower cutis and subcutis, but also in muscles, tendons, joints, and the serosa of abdominal viscera, and even within the parenchyma of the pancreas. The mesentery of the rat contains so many of them that this tissue is used for the demonstration of the corpuscles to students. They are easily detected with routine stains (Plate 16 C). The structure consists of thin, concentrically arranged collagenous fibers, separated by layers of fluid, surrounding a fluid-filled central cavity into which a medullated nerve penetrates as an axon fiber and to which changes of pressure are transmitted. The medullary sheath is lost after it pierces the capsule, and the axon fiber terminates into two or three swollen branch endings. The nerve itself is demonstrable with silver stains (Bieleskowsky's stain). The Pacinian corpuscles are assumed to receive deep pressure and to effect proprioceptive sensations. The end bulbs of Krause are club-shaped structures somewhat similar to the Pacinian corpuscles but are a good deal smaller, averaging about 0.03 mm. in length. They are located in greatest numbers in the glans penis and clitoris but are also found at the edge of the eyelids, the soles of the feet, and in oral

PLATE 16. ANATOMY NERVES

A. **MEISSNER CORPUSCLE**, from skin of foot, which transmits the sensation of touch.

B. **TASTE BUD** incorporated in epithelium of tongue.

C. **PACINIAN CORPUSCLE** which suberves pressure.

D and E. **NEUROMUSCULAR SPINDLES** of skeletal muscle which have a proprioceptive function.
and other genital mucose membranes. They are stated to transmit sensations of heat and cold.

Ruffini Spindles.—The spindles of Ruffini are found chiefly in the lower dermis and subcutis of the palms and soles. They are made up of a network of nerve fibrils derived from a nonmedullated fiber and enclosed in an elastic and collogenous capsule. They are about the size of Krause’s end bulbs and are detectable only with special stains. They are assumed to receive sensations of heat (Plate 1).

Taste Buds.—Taste buds are still another form of nerve ending readily visible with ordinary stains (Plate 16 B). They are found predominantly in the tongue but are present also in the mucose of the epiglottis and larynx. The taste buds are ovoid collections of crescentic supportive or sustentacular cells, among which are intermingled long, narrow, gustatory or neuroepithelial cells. These latter cells extend to the pit or pore of the bud which opens on to the surface. Axon fibers reach the buds of the anterior two-thirds of the tongue from the chorda tympani of the facial nerve and by way of the glossopharyngeal nerve for the posterior third. It is presumed that each of the tastes (salt, sweet, sour, and bitter) is subserved by specialized receptors.

Muscle Spindles.—Another type of nerve ending might be mentioned even though it is not found in the skin or mucose membrane. It is the neuromuscular spindle found scattered in skeletal muscles, including the extraocular muscles. The endings have a proprioceptive function. They are variable in size, from 100 to 2,000 microns in length and 20 to 100 microns in width. They are easily detectable with routine stains by their oval or circular cross sections with a delicate capsule enclosing loosely disposed nerve fibers enmeshed about several muscle bundles (Plate 16 D and E) (Cooper and Daniel, 1949).

Glomera.—The precise anatomic relationship between nerve twigs and capillaries is still not entirely clarified, although the contact must be intimate. In addition to these vasomotor nerve plexuses, there is a specialized apparatus known as a glomus which serves also to regulate the blood flow through the skin. The glomus consists of a nonmedullated nerve in association with an afferent arteriole and an efferent nerve, linked by a sinuosoidal channel called the Suequet-Hoyer canal. So-called glomus cells, round uniform structures of about the size and shape and appearance of nonpigmented intradermal nerve cells, cuff the vessels in several layers. These cells are presumed to have the capacity of contractility for purposes of altering the caliber of the vessels they surround. Glomera, which average about 150 to 300 microns in diameter, are particularly abundant in the finger tips, where their concentration is about 500 per square centimeter in the nail bed. They may also be found in the skin of other parts of the body, in joints, and in viscera. Clinically and histologically, characteristic tumors arise from glomera (Plate 18 A and B).

Blood Vessels

The blood vessels of the skin are different in certain basic respects from those of the viscera. In the first place, the cutaneous vessels are exposed to rapid and wide variations of external heat and cold, to ultraviolet radiation, to trauma, and to widespread alteration by disease of their overlying epidermis. Second, there is in reality a relative paucity of cutaneous capillaries in contrast to their number in other organs, such as muscle, kidney, or intestine. For example, the concentration of capillaries may average 18 to 65 per square millimeter of skin, whereas that of skeletal muscle may be 1 to 2 thousand per square millimeter (Krogh, 1929; Zotterman and Witzel, 1926). Third, the vascular system of the skin is critically important in the homeostatic regulation of blood volume in the more vital areas of the body. This homeostatic control of the over-all body economy is on occasion achieved at the expense of the skin through neglect of its metabolic requirements. Psychosomatic reactions (blush-