Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
CASE STUDY

Vesna Petronic-Rosic, MD, MSc, Section Editor

Multiple Cystic Disease: K17 Dysfunction?

Hugo Néstor Cabrera, MD; María Daniela Hermida, MD; Elba Griffa, MD; Claudia Civitillo, MD; José Porta, MD

Our patient is a 29-year-old woman without any previous disease who presented with different kinds of lesions on her face, neck, and chest. She first noticed the lesions 10 years ago and, since that time, they have become more numerous. She has no affected relatives. On physical examination, she had multiple cystic lesions on her neck, chest, and vulva, which were between 0.3 cm and 1 cm and skin-colored or yellowish (Figure 1). She presented with small, white papules on her face measuring approximately 0.2 cm, localized on her forehead and cheeks. Some of these papules had a blueish appearance (Figure 2). She also presented clinically typical eruptive syringomas on her upper and lower eyelids and neck and multiple facial milia. Finally, a sacrococcygeal pilonidal cyst was diagnosed and surgically removed. Her nails and teeth were clinically normal. Biopsies of each kind of lesion were performed, with the following results: (1) neck cystic lesion: steatocystoma; (2) small, white facial papule: eccrine hidrocystoma; (3) blueish facial papule: apocrine hidrocystoma; and (4) small neck papule: syringoma (Figure 3). With these findings, our diagnosis was steatocystoma multiplex with multiple eccrine and apocrine hidrocystomas, eruptive syringomas, and sacrococcygeal pilonidal cyst. (SKINmed. 2013;11:301–303)

K17 is a type I keratin with a complex pattern of expression. During development, the single-layered epithelial cells that express K17 give rise to placodes, the precursors of ectoderm-derived appendages (hair, glands, nails, and teeth). After birth, its constitutive expression is restricted to hair follicles, nail matrix, and the myoepithelium surrounding secretory glandular cells.1

The finding that links these two patterns of expression (embryologic and adult) is that K17 is strongly inducible in epidermis following acute injury. During the epidermal repair process, expression of K17 spreads distally from the edge of the wound and is maintained in keratinocytes that are migrating to the site. Follicular K17 expressing keratinocytes greatly contribute to the process.1 In addition, it has recently been studied that in the absence of epidermis, eccrine sweat glands can start wound repair possibly through myoepithelium K17-expressing cells.2

In pathological situations such as hyperproliferation or abnormal differentiation, K17 expression is also increased. Psoriasis, inflammatory states, viral infections, and basal cell carcinoma are some examples.3 K17 up-regulation seems to be a key factor in the activation, migration, and division of epithelium with important stromal interactions.

K17 mutations give rise to pachyonychia congenita type 2 (PC-2) and steatocystoma multiplex (SM), both autosomal-dominant disorders. Currently, 14 missense mutations have been identified that occur within the helix initiation motif.4 This sequence may be directly involved in keratin filaments assembly through end-to-end interactions; however, any phenotype can arise from the same mutation and, at the same time, these two diseases show highly heterogeneous clinical features. In SM, multiple steatocystomas develop around puberty. Milia and vellus hair cysts can also be present. Patients with PC-2 show hypertrophic nail dystrophy, focal keratoderma, follicular keratosis, teeth and hair abnormalities, and multiple cystic lesions of different kinds. These “follicular hybrid cysts” are highly heterogeneous and include steatocystomas, epidermal cysts, milia, vellus hair cysts, hidradenitis suppurativa–like cysts, and vulvar and scrotal cystomatosis.5

We can only speculate about the functional alterations of K17 derived from its mutations. In SM and PC-2, K17 structural function may be impeded giving room to hair shaft abnormalities and nail dystrophy, hyperkeratosis can contribute to infun-
CASE STUDY

Multiple Cystic Disease: K17 Dysfunction?

Figure 1. Multiple steatocystomas localized on the patient's neck.

Figure 2. Apocrine hidrocystoma (arrow).

Figure 3. Histologic slides: (A) steatocystoma (hematoxylin-eosin stain, original magnification ×200); (B) eccrine hydrocystoma (hematoxylin-eosin stain, original magnification ×200); (C) apocrine hydrocystoma (hematoxylin-eosin stain, original magnification ×200); (D) syringoma (hematoxylin-eosin stain, original magnification ×200).
dibular occlusion and formation of retention cysts, and developmental alterations in appendage formation could be related to cystic, adenomatous, or hyperproliferative lesions.

CONCLUSIONS

Our patient presented with multiple steatocystomas and other lesions, most of them cysts derived both from eccrine and apocrine sweat glands, exhibiting a unique spectrum of clinical features. The presence of hydrocystomas exceeds a diagnosis of SM, and PC-2 would lack nail, teeth, or hair shaft alterations. We believe that a mutation in K17 could explain this phenotype, which has not been previously reported in the literature.

REFERENCES


