Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
A severe case of pachyonychia congenita type I due to a novel proline mutation in keratin 6a

I. García-Río, P.F. Peñas, A. García-Díez, W.H.I. McLean* and F.J.D. Smith*

Department of Dermatology, Hospital Universitario de la Princesa, Diego de León 62, 28006 Madrid, Spain
*Epithelial Genetics Group, Human Genetics Unit, Ninewells Medical School, University of Dundee, Dundee DD1 9SY, U.K.

Correspondence
Frances Smith.
E-mail: fjsmith@hgmp.mrc.ac.uk

Accepted for publication
5 August 2004

Conflicts of interest:
one declared.

Pachyonychia congenita (PC) is an autosomal dominantly inherited ectodermal dysplasia with variable expression and high penetrance. The major features of the syndrome are hypertrophic nail dystrophy, palmoplantar keratoderma and oral leucokeratosis, accompanied by other ectodermal defects, according to subtype. Defects in keratins expressed within the nail bed have been found to underlie the two major variants of PC. Specifically, keratin K6a or K16 mutations cause type I/Jadassohn–Lewandowsky syndrome (PC-1), and K6b or K17 abnormalities result in type II/Jackson–Lawler syndrome (PC-2). We report a new mutation in the K6a gene in a sporadic case of PC-1 with a severe clinical presentation.

Case and methods

A 30-year-old woman presented with thick nails, hyperkeratotic skin lesions on both feet and oral leucoplakia. Whitish plaques on the buccal mucosa had been present since the first months of life, and at this time the toenails became thickened with a yellow greish colour. Similar fingernail changes soon followed. When she started walking, she suffered recurrent blistering and crust formation on the soles of her feet, followed by gradual development of thick plantar keratoderma. Now, in adulthood, painful fissuring of the soles makes walking very difficult, especially during summer. There was neither consanguinity in the family nor a history of similar cutaneous findings. Physical examination revealed typical symmetrical thickening of all fingernails and toenails (Fig. 1a,b). Yellowish thick plaques with fissures on both soles were also observed and there was extensive oral leucokeratosis (Fig. 1c,d). She had also follicular hyperkeratosis on the buttocks, elbows and knees (not shown). There were no hair anomalies, hoarseness, natal teeth or the pilosebaceous cysts diagnostic of PC-2. Biopsy of a typical plantar lesion showed psoriasiform hyperplasia and parakeratosis. The basal layer contained keratinocytes with wide, clear cytoplasm. In the dermis there was a perivascular infiltrate composed mainly of lymphocytes (Fig. 1e).

Several topical treatments including lubricants, emollients, keratolytics such as salicylic acid, antibiotics, antiseptic wet dressings, hydrocolloid dressings, chromium mercury solution, corticosteroid cream, retinoid cream and coal tar had been tried in the past, with no success. The patient had also been treated with etretinate 25 mg daily, vitamin A 50 000–100 000 U daily and erythromycin 500 mg three times daily, with only slight improvement. Oral corticosteroids, up to 30 mg daily, and nonsteroidal anti-inflammatory drugs produced only transient benefit. Only ibuprofen 1200 mg daily gave some subjective improvement. Mycological cultures from nails and whitish plaques on the tongue were normal.

Results and discussion

Molecular genetic analysis, as described previously, identified a novel defect in K6a. Direct sequencing of genomic polymerase chain reaction products revealed a heterozygous missense mutation 1390A→C in exon 7 of the KRT6A gene (Fig. 2). This mutation predicts the amino acid change threonine to proline (T464P) in the helix termination motif of the K6a polypeptide. The mutation was excluded from 60 normal unrelated controls by restriction enzyme analysis (NlaIV site created with mismatch primer; data not shown). This particular defect has not been reported previously, although there have been two nearby mutations (L469R and E472K) in the helix 2B domain of the K6a protein, which is a recognized keratin mutation ‘hot-spot’ (Intermediate Filament Mutation Database: http://www.interfil.org). The amino acid proline is particularly disruptive to α-helical tertiary structures
in proteins, and proline mutations have been reported in other moderate-to-severe cases of PC. This might help explain the more severe symptoms in the patient, although there are undoubtedly other modifying factors at play in PC and other keratin disorders.

Our patient presented with all the features of PC-1 (nail changes, palmoplantar hyperkeratosis, follicular keratosis and oral leucokeratosis). Although PC might appear to be primarily a cosmetic disorder, the physical disability resulting from the severe and very painful keratoderma can have a substantial impact on quality of life, as is illustrated by our patient (Fig. 1). At the present time, there is no curative treatment for PC and therefore therapeutic efforts should be directed towards improving symptoms that cause significant disability. Numerous treatments have been tried in PC, with little success. Surgical removal of the abnormal nails may not be helpful because the dystrophic nail can regrow and, similarly, systemic retinoid therapy produces inconsistent results. Very recently, an international PC charity has been established offering advice for patients and their clinicians, genetic testing and funding research into novel treatments (http://www.pc-project.org). These new initiatives will help support patients with PC presently and will hopefully lead to the development of more efficacious therapies for this debilitating genodermatosis in the future.

Acknowledgments

We thank the patient for her participation in this study. We also thank the Molecular Genetics Laboratory, Ninewells University Hospitals NHS Trust for genomic DNA extraction and Andrew J. Cassidy, Molecular Genetics Analysis Facility,
Ninewells Medical School, Dundee, for DNA sequencing. W.H.I.M. and F.D.J.S. are funded by a Wellcome Trust Senior Research Fellowship (W.H.I.M.), the Dystrophic Epidermolysis Bullosa Research Association (DEBRA) UK (W.H.I.M.) and the Pachyonychia Congenita Project (F.J.D.S. and W.H.I.M.).

References