In other words, we were interested in the frequency and not in the duration of AEs, and therefore we considered the incidence of AEs instantaneous.

As an alternative to using time in the condition of AEs as a time-varying covariate, one could come up with a complex modeling approach, such as defining a continuously time-varying “potential” for AEs and then consider the actual AE incidence to be a Poisson point process realization with intensity defined by this potential function. However, adding this extra layer to the model increases complexity drastically and precludes the opportunity to use standard statistical software for analysis.

The specific approach we implemented to account for the entanglement of AEs with time was to use a multivariate Cox regression model where the “time effect” was accounted for by including the number of pembrolizumab cycles received as an additive predictor. We believe that this is clearly stated in our report. We corrected for the number of cycles rather than time as a continuous variable because some patients received the drug every 2 weeks and some every 3 weeks, and therefore the number of cycles was most important to account for.

In our article we discuss that the results have to be interpreted with caution, and we are aware that the analysis performed may not fully mitigate the entanglement of time to progression and the time on treatment. In only 1 group (Figure 3C) did we find significant correlation between the time to progression and the development of AEs when corrected for the number of pembrolizumab cycles.1

Finally, Hwang et al recommend that the analysis be done by an experienced statistician, and we reply that this analysis was supervised and recommended by experienced statisticians from the University of California, San Francisco. We invite Dr Hwang and colleagues to contact us if they are in need of further explanations.

Martina Sanlorenzo, MD
Igor Vujic, MD
Susana Ortiz-Urda, MD, PhD, MBA

Author Affiliations: Mt Zion Cancer Research Center, Department of Dermatology, University of California, San Francisco (Sanlorenzo, Vujic, Ortiz-Urda); Section of Dermatology, Department of Medical Sciences, University of Turin, Turin, Italy (Sanlorenzo); Department of Dermatology, The Rudolfstiftung Hospital, Academic Teaching Hospital, Medical University Vienna, Vienna, Austria (Vujic).

Corresponding Author: Martina Sanlorenzo, MD, Mt Zion Cancer Research Center, Department of Dermatology, University of California, San Francisco, 2340 Sutter St, N461, San Francisco, CA 94115 (martina.sanlorenzo@hotmail.it).

Author Contributions: Drs Sanlorenzo and Vujic contributed equally to this letter.

Conflict of Interest Disclosures: None reported.

Additional Contributions: We thank Ann Lazar, PhD, and John Kornack, PhD, Clinical and Translational Science Institute (CTSI), University of California, San Francisco (UCSF), for their help in the statistical analysis of the data in our study. Their work was supported by the National Center for Advancing Translational Sciences, National Institutes of Health, through UCSF-CTSI grant UL1 TR000004, but they received no other compensation for their contributions beyond that received in the normal course of their employment. The institutions funding the acknowledged persons had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.


Identification of a CAST Mutation in a Cohort Previously Misdiagnosed as Having Autosomal Recessive Pachyonychia Congenita

To the Editor This letter corrects our diagnosis from 1986, documents the CAST mutation in our patients from that time, and adds to the list of genodermatoses that may mimic pachyonychia congenita (PC).

The gold standard for diagnosis of genetic skin diseases is the demonstration of the causative gene mutation. The dominantly inherited genodermatosis PC is caused by a mutation in K6a, K6b, K6c, K16, or K17.1 Pachyonychia congenita can be clinically misdiagnosed, with reports of Clouston syndrome mimicking PC, and the correct diagnosis can only be made by gene mutational analysis.2

In 1986, prior to the establishment of the causative PC keratin gene mutations, we reported PC with autosomal recessive inheritance.3 When one of our original patients was eventually contacted for genetic assessment in 2015 and tested negative for any of the known keratin mutations causing PC, he underwent whole-exome sequencing, which established the correct diagnosis of PLACK syndrome (peeling skin, leukonychia, acral punctate keratoses, cheilitis, and knuckle pads) in our cohort.

PLACK syndrome was recently described by Lin et al4 as a new type of autosomal recessive generalized peeling skin syndrome caused by mutations in the CAST gene. The authors describe Chinese and Nepalese patients as well as our “autosomal recessive PC” family. By whole-exome sequencing, Lin et al found that all affected individuals had loss-of-function mutations in the CAST gene that encodes for the protein calpastatin. The CAST mutation in our patients was a homozygous frameshift mutation, c.1750delG, p.Val584Trpfs*37. Different homozygous mutations were identified in the Chinese and Nepalese families. Similar to the other 2 families with PLACK syndrome, our patients had peeling skin, leukonychia, acral punctate keratoses, and angular cheilitis. Our patients differed from the other 2 families with PLACK syndrome in that they had extensive oral leukokeratosis, more diffuse plantar keratoderma, and no knuckle pads. To our knowledge, the only other report of autosomal recessive PC was in 1977, a Malaysian girl whose parents were first cousins.5 This case was never supported by a molecular diagnosis.

All genetically documented cases of PC in the Pachyonychia Congenita Research Registry are dominantly inherited (personal communication with Mary E. Schwartz at the Pachyonychia Congenita Project, 2015). To our knowledge, there are no known cases of autosomal recessive PC with confirmed genetic analysis.

Richard M. Haber, MD, FRCP
Toby H. Rose, MD, FRCP

Author Affiliations: Division of Dermatology, Department of Medicine, University of Calgary, Calgary, Alberta, Canada (Haber); Ontario Forensic
Pathology Service, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada (Rose).

Corresponding Author: Richard M. Haber MD, FRCP, Division of Dermatology, Department of Medicine, University of Calgary, 1153-1820 Richmond Rd SW, Calgary, AB T2N 5C7 Canada (richard.haber@albertahealthservices.ca).

Conflict of Interest Disclosures: None reported.

Funding/Support: The genetic analysis of samples from our 1986 cases was funded by a grant from the Pachyonychia Congenita Project.

Role of the Funder/Sponsor: The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.

Additional Contributions: We are indebted to Mary E. Schwartz, Research and Publications Coordinator, Pachyonychia Congenita Project, and to Frances Smith, MD, and Neil Wilson, Division of Molecular Medicine, University of Dundee, for performing the genetic analysis of our 1986 cases.


CORRECTION

Error in Text: In the Case Report titled “Growth Attenuation of Cutaneous Angiosarcoma With Propranolol-Mediated β-Blockade,” published online September 16, 2015, in JAMA Dermatology,1 there were errors in the Abstract, Introduction, Report of a Case, and Figure 3. Instances of “paclitaxel-poliglumex” should have read “paclitaxel”. This article was corrected online.