Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
A novel H1 mutation in keratin 6a in an infant with pachyonychia congenita

Shuanghong Luo, Qihong Luo, Habda Zhang*, Chaomin Wan

Department of Pediatrics, West China Second University Hospital, Sichuan University, Molecular Genetics Laboratory, Prenatal Diagnosis Center of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, China

Address for correspondence: Prof. Chaomin Wan, No. 17 Section Three, Ren Min Nan Lu Avenue, Chengdu, 610041, Sichuan, China. E-mail: wcm0220@126.com

ABSTRACT

Pachyonychia congenita (PC) is a rare genetic disorder which is inherited in an autosomal dominant pattern. We report a sporadic novel H1 mutation in the KRT6A gene (c. 428G>A/p. Ser143Asn) in a Chinese infant patient. The mutation is concurrent with a single-nucleotide polymorphism and resulted in a serine for asparagine substitution in H1 subdomain of KRT6A chain next to the rod domain. The infant showed the classic symptoms of pachyonychia congenita. Conclusion: The heterozygous missense mutation c. 428G > A/p.Ser143Asn in KRT6A exon 1 may cause severe disease.

Key words: Keratin 6A gene, keratin-6, mutation, pachyonychia congenita

INTRODUCTION

Pachyonychia congenita (PC, OMIM 167200 and 167210) is a rare autosomal dominant genetic disease that mainly affects the nails, palmo-plantar skin and oral mucosa. The greatest impact on patients’ life is widely considered to be due to severe plantar pain secondary to thick keratoderma. [1,2] Based on the causative mutations identified in KRT6A, KRT6B, KRT6C, KRT16, and KRT17, pachyonychia congenita is subdivided into five subtypes namely PC-K6a, PC-K6b, PC-K6c, PC-K16, and PC-K17 respectively. [1,2] The clinical phenotypes overlap substantially across PC-K6a, PC-K16, PC-K6b, and PC-K17; thick toenails and painful plantar keratoderma are the major phenotypic features; other common clinical findings include thick fingernails, oral leukokeratosis, palmar keratoderma, follicular hyperkeratosis, cysts including epidermal inclusion cysts and pilosebaceous cysts, hoarseness, and natal teeth. [1,2] Currently, information regarding clinical the phenotype of mutations in KRT6C is limited to a small number of reported cases. The individuals present with a milder phenotype than that caused by mutation in other genes, usually manifesting palmo-plantar keratoderma with only mild or no nail changes and plantar pain. [3-7] The age at onset and some phenotypic characteristics may help the clinician to suspect a specific subtype before genotyping is completed. [2,3] Herein, we report a novel H1 mutation in KRT6A in a Chinese infant.

CASE REPORT

A 3½-month old female child presented with hoarseness, abnormal nails and oral mucosal plaques since birth. Nails appeared yellowish at birth and had gradually darkened and thickened subsequently [Figure 1a]. At one week of age she was noticed to have a whitish plaque on the palatal mucosa which was diagnosed as “thrush” with associated “onychomycosis”. Laboratory tests however, could not demonstrate fungus and she did not respond to itraconazole treatment. On examination, follicular hyperkeratosis was detected on both ears which was

Access this article online
Quick Response Code: wwwijdvl.com
Website: doi: 10.4103/0378-6323.158651

How to cite this article: Luo S, Luo Q, Zhang H, Wan C. A novel H1 mutation in keratin 6a in an infant with pachyonychia congenita. Indian J Dermatol Venereol Leprol 2015;81:385-7.

Received: August, 2014. Accepted: January, 2015. Source of Support: This study was supported by funding from Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (IRT0935). Conflict of Interest: None declared.
RESULTS AND DISCUSSION

This 2-year-old patient had thickened toenails and fingernails, plantar keratoderma, oral leukokeratosis, hoarseness and follicular hyperkeratosis without natal teeth or steatocystoma multiplex. Both the thickened toenails and plantar keratoderma are major clinical features of pachyonychia congenita across all mutation subtypes. We were unable to ascertain the occurrence of plantar pain because she was too young to express her pain clearly. Concurrent toenail and fingernail thickening since birth, oral leukokeratosis, hoarseness and follicular hyperkeratosis are findings that occur more frequently in the PC-K6a subtype than in other subtypes.

Amplification and DNA sequencing did not reveal any mutation in all KRT16, KRT6B, and KRT17 exons. However, one heterozygous missense mutation was found in KRT6A exon 1, c. 428G>A/p. Ser143Asn [Figure 3]. This mutation was not detected in any of the 105 controls and her family members including her father (for whom DNA fingerprinting analysis was done to establish paternity). This suggests a pathogenic mutation rather than a rare single-nucleotide polymorphism (SNP). This mutation occurred in the H1 subdomain of the K6A protein just before the rod domain. Early studies indicate that the H1 subdomain is important in the alignment of the nearest neighboring molecules in the keratin intermediate filament structure. Mutations in the H1 domain do occur in other keratins, including KRT16; however, only two cases with mutation in H1 domain in KRT6A have been reported by Wilson et al.

Our case in addition also demonstrated the nucleotide change c. 289G>A/p.Gly97Arg, which is a known single nucleotide polymorphism (SNP) in the dbSNP database (accession number: rs200254647). This nucleotide change was not detected in any of her family members.
REFERENCES


9. Steinert PM, Parry DA. The conserved H1 domain of the type II keratin 1 chain plays an essential role in the alignment of nearest neighbor molecules in mouse and human keratin 1/keratin 10 intermediate filaments at the two- to four-molecule level of structure. J Biol Chem 1993;268:2878-87.

ACKNOWLEDGMENTS

The authors express their gratitude to the patient and her family for their participation in the study.