Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
Cornified envelopes in congenital disorders of keratinization

S. MICHEL AND L. JUHLIN*

Centre International de Recherches Dermatologiques (CIRD), Sophia Antipolis, F-06565 Valbonne, France and
*Department of Dermatology, Uppsala University, S-751 85 Uppsala, Sweden

Accepted for publication 18 July 1989

SUMMARY

A morphological and biochemical analysis was made of cornified envelopes isolated from patients with different congenital disorders. Nomarski contrast microscopy of the envelopes showed that their morphology was not greatly altered in several types of keratoderma and parapsoriasis, but it was grossly modified in ichthyotic disorders. The various types of ichthyoses, keratoderma palmoplantare, KID syndrome and parapsoriasis showed, after cyanogen–bromide cleavage, peptide patterns similar to those obtained from healthy subjects.

In contrast, envelopes from patients with Darier's disease, congenital pachyonychia and erythrodermatoderma variabilis showed markedly different peptide patterns.

The cornified envelope (CE) is an insoluble protein structure synthesized during terminal differentiation of epidermal keratinocytes. It is formed at the level of the upper granular layer by plasma membrane-associated transglutaminase. This calcium-dependent enzyme catalyses the covalent cross-linking of precursor proteins via γ-glutamyl-ε-lysine isopeptide bonds. In the epidermis two morphologically distinct types of CEs have recently been identified: a polygonal rigid type (CEp) and an irregularly shaped type with a fragile appearance (CEf) which, in healthy skin, is only present in the lower part of the stratum corneum. These two types possibly represent two successive steps of CE maturation. The stratum corneum of normal subjects contains mainly CEp, whereas the scales in psoriasis contain a much higher proportion of CEf. Keratinocytes in submerged cultures are only able to form CEp.

Several CE precursor proteins have been identified in cultured keratinocytes. These proteins are either cytosoluble, e.g. involucrin, or plasma-membrane bound. Involucrin has been proposed as the major precursor of cornified envelopes of cultured normal keratinocytes. However, transformed keratinocytes (line SV-K14), which contain a very low level of involucrin, are nevertheless able to form CEs after being treated with a calcium ionophore, probably by using a different set of precursor proteins. Moreover cyanogen–bromide peptide

Correspondence: Dr S. Michel.
mapping of purified envelopes revealed differences in the composition of the CEs from culture normal keratinocytes, SV-40-transformed keratinocytes, normal epidermis and psoriatic scales. These results indicate that the molecular composition of the CE may not be strictly constant and may vary according to the availability of substrate proteins when the cross-linking enzyme transglutaminase becomes activated. We have analysed the CEs from patients with various congenital hyperkeratotic lesions.

METHODS

Patients

Keratosis follicularis (Darier’s disease). Five patients, aged 16–62, with typical lesions on trunk and legs.

Keratoderma palmoplantare. Three patients, aged 20–52, with lesions only on soles and palms.

KID (keratitis, ichthyosis, deafness) syndrome. A girl, aged 10, with keratoderma palmoplantar and red ichthyotic lesions especially on the face, ears and extremities.

Congenital pachyonychia. A boy, aged 15, with marked changes of nails and hair and severe keratoderma of the soles and palms.

Erythrokeratoderma variabilis. A woman, aged 21, with widespread areas of erythema and ichthyosis that she has had since birth.

Parapsoriasis. Two patients, aged 61 and 81, with circumscribed, oval, slightly scaly and persistent erythematous lesions.

Ichthyosis vulgaris. Three patients, aged 30–37, with dry skin and marked ichthyotic lesions on the extremities.

Ichthyosis, brittle hair syndrome. Two brothers, aged 16–18, with dry ichthyotic skin and brittle hair since birth. The stature was normal and an amino acid analysis had not yet been performed to exclude a diagnosis of trichothiodystrophy.

These diagnoses were confirmed both clinically and histologically.

Collection of the samples

The patients had no treatment for at least 2 months before sampling apart from moisturising creams. The corneocytes were collected from the stratum corneum by curettage and the material obtained placed in an aqueous solution of 2% sodium dodecyl sulphate (SDS), 0.1% dithioerythritol and 0.01% sodium azide and stored at 4°C.

Cornified envelope purification

Purification was performed as previously described. The samples were boiled with vigorous stirring for 10 min. The CEs were recovered with 5 min centrifugation at 3500 g and resuspended in the above described mixture. Boiling and centrifugation was repeated four times and the final pellet was suspended in an equivalent volume of Laemmli sample buffer and transferred into a dialysis bag (100,000 Da cut-off). The CEs were recovered three times.

Cyanogen bromide (CNBr) cleavage

The protein content of the envelope was digested with proteinase K.

The envelopes were suspended in a solution of 100 mM Tris-HCl, pH 8.0, 10% glycerol, 1% SDS, 10 mM DTT and 100 µg/ml proteinase K and incubated overnight at 48°C. The enzymes were inactivated by incubation at 65°C for 10 min and the samples were boiled for 5 min before further purification.

Electrophoresis

Electrophoresis of the peptides revealed by silver staining.

Morphology of the CEs

The morphological aspects of the CEs are presented in Figure 1. As described, they are characteristic of the limited number of pathologically differentiated cells. The CE is a single type C of keratinocytes, with a clear distinction between the normal skin and a subtype of keratinocytes present in the CEs. The morphology of the CEs is similar to that of normal skin keratinocytes.

The CE film is mainly composed of keratinocytes and a small number of other cell types, including melanocytes, fibroblasts and adipocytes. The CEs from ichthyosis vulgaris are similar to those from normal skin in that they are composed of keratinocytes, but differ in the presence of melanocytes and fibroblasts.

In parapsoriasis, the CE film is composed of keratinocytes, melanocytes and fibroblasts. The presence of melanocytes is more marked in parapsoriasis than in normal skin.

The CEs from ichthyosis vulgaris are similar to those from normal skin in that they are composed of keratinocytes, but differ in the presence of melanocytes and fibroblasts.

The CE film is mainly composed of keratinocytes and a small number of other cell types, including melanocytes, fibroblasts and adipocytes. The CEs from ichthyosis vulgaris are similar to those from normal skin in that they are composed of keratinocytes, but differ in the presence of melanocytes and fibroblasts.
composition of the CEs from cultures, normal epidermis and psoriasis, position of the CE may not be strictly substrate proteins when the cross-linking was analysed the CEs from patients with transferred into a dialysis bag (Spectra/por 6/132542; M, cut off: 50,000; Spectrum Medical Industries, Los Angeles, CA, U.S.A.). The dialysis bag was immersed into an electrophoretic tank containing Laemmli running buffer and subjected to electrophoresis at 20–50 V for 24 h. The envelopes were recovered by centrifugation and the electrodialysis procedure was repeated three more times.

Cyanogen bromide (CNBr) cleavage of CEs

The protein content of the envelopes was determined by the Lowry procedure after digestion with proteinase K.

The envelopes were suspended in 70% (v/v) formic acid, and 20 mg of CNBr was added per mg protein. Under these conditions, selective cleavage of peptide bonds occurs at the level of methionine residues. After 24 h of agitation at room temperature the mixture was diluted 1:5 with distilled water. After drying under a vacuum the residues were suspended in Laemmli sample buffer.

Electrophoresis

Electrophoresis of the peptides was performed according to the procedure of Laemmli. Fifteen per cent polyacrylamide gels were used and 10 µg of protein were loaded per lane. The peptides were revealed by silver staining.

RESULTS

Morphology of the CEs

The morphological aspects of the CEs obtained from patients affected with different dermatoses are presented in Figure 1. As a reference, CEs from normal human epidermis are shown in Figure 1a. As described they mainly consisted of CE, with only a minor proportion of CE. Due to the limited number of patients examined, it is not possible to determine precisely the proportion of type CE, and CE in each dermatosis. As a consequence, the different diseases are described in qualitative rather than in quantitative terms.

The morphology of CEs obtained from patients with Darier’s disease is shown in Figure 1b; being mainly composed of CE. However, their size and shape are more heterogeneous than those from normal skin.

Palmoplantar keratoderma lesions (Fig. 1c) contained mainly CE. The envelopes were larger than those from normal epidermis. CEs prepared from a patient with KID syndrome (Fig. 1d) and from a patient with congenital pachyonychia (not shown) were very similar to those of normal skin apart from a relative increase in CE. CEs from a patient with erythroderma variabilis (Fig. 1e) are similar to those from normal skin.

In parapsoriasis epidermis (Fig. 1f) the type CE is predominant. A characteristic feature of this disease was the presence of a nuclear-like inclusion in some envelopes which made it easy to distinguish it from psoriasis vulgaris (Fig. 1h). Even though parakeratosis is also a characteristic feature of psoriasis, there were no nuclei present in the CE preparation (Fig. 1h), indicating differences in the cross-linking reaction in both diseases.

The CEs from ichthyosis vulgaris (Fig. 1g) contained an increased number of type CE and those from one ichthyotic patient were reduced in size. This was also observed in the samples prepared from the two patients with ichthyosis, brittle hair syndrome.
CNBr peptide mapping
The CNBr peptide maps of the CEs differed markedly from those of normal epidermis. The peptide pattern of CEs purified from the lesions of patients with Darier's disease (b), keratoderma palmoplantare (c), KID syndrome (d), erythroderma variabilis (e), parapsoriasis (f), ichthyosis vulgaris (g) and psoriasis vulgaris (h).

Cyanogen-bromide peptide mapping
The CNBr peptide maps of the CEs differed markedly from those of normal epidermis. The peptide pattern of CEs purified from the lesions of patients with Darier's disease (b), keratoderma palmoplantare (c), KID syndrome (d), erythroderma variabilis (e), parapsoriasis (f), ichthyosis vulgaris (g) and psoriasis vulgaris (h).
Figure 2. Cyanogen-bromide peptide mapping of the cornified envelopes obtained from normal epidermis (A) and from the lesional skin of patients with Darier’s disease (B), congenital pachyonychia (C), erythrokeratoderma variabilis (D), ichthyosis vulgaris (E) and keratoderma plantare (F). The position of molecular weight markers (in kDa) is indicated.

CNBr peptide mapping

The CNBr peptide maps of the CEs obtained from different origins are presented in Figure 2. The peptide pattern of CEs purified from the lesional skin of patients with Darier’s disease differed markedly from those of normal epidermis, in particular at the level of peptides of molecular weight comprised between 18 and 6 kDa (map B to be compared with map A). A similar difference was also observed in congenital pachyonychia (map C).

The CNBr peptide maps of CEs obtained from a patient with erythrokeratoderma variabilis (map D) exhibited a characteristic peptide of molecular weight 18 kDa not present in the peptide pattern of CEs from normal skin.

The peptide maps of CEs obtained from the patients with ichthyosis vulgaris (map E), palmoplantar keratoderma (map F) and of the other diseases studied (not shown) were not significantly different from those of healthy subjects.
S. Michel and L. Juhlin

DISCUSSION

According to the morphology of the CEs, congenital disorders of keratinization can be divided into two classes. One comprises keratoderma palmoplantare, KID syndrome, congenital pachyonychia, erythrodermatoderma variabilis and parapsoriasis in which the morphology of the CEs is very close to that of normal skin. In the other class, that consisted of Darier's disease, ichthyosis vulgaris and the ichthyosis brittle hair syndrome, the morphology of the CEs is grossly altered. In the ichthyotic-like dermatoses the morphology of the CEs resemble closely that of psoriatic epidermis (Fig. 1g to be compared with Fig. 1h) and contain an increased number of CE. The reduced size of CEs observed in some ichthyotic patients is apparently correlated with a reduced size of corneocytes. In Darier's disease, the morphology of the CE is heterogeneous, which could indicate that in this disorder the keratinocyte morphology is already altered at the level of the upper granular layer, in which the CE is formed.

The CNBr peptide mapping of CEs revealed that the peptide composition of CEs from patients affected with Darier's disease, congenital pachyonychia and erythrodermatoderma variabilis are different from those of normal skin. The pattern of CEs from patients with Darier's disease and congenital pachyonychia showed an accumulation of low molecular weight peptides similar but not identical to that observed in CEs from psoriatic patients. The peptide pattern from a patient with erythrodermatoderma is strikingly different from that of normal and psoriatic individuals. The peptide patterns obtained with CEs from the other diseases resemble those of normal skin.

The morphology and peptide composition of the CEs are not strictly correlated. Ichthyosis vulgaris, for example, shows an abnormal CE morphology with a normal peptide pattern, whereas congenital pachyonychia presents a normal CE morphology but an abnormal peptide pattern. This shows that the morphology of CEs does not depend exclusively on the peptide composition, but may also be affected by other parameters such as the attachment of the recently described ester-linked hydroxyacyl sphingosine.

Biochemical studies of congenital disorders of keratinization have been limited so far to the analysis of keratin proteins. Bowden et al. found normal keratin expression in ichthyosis by an alteration of the normal keratin pattern in Darier's disease. Expression of normal keratin subunits in ichthyosis was confirmed by the immunoblotting technique with AE1 and AE3 monoclonal antibodies. These results on keratin expression in diseases cannot be strictly correlated with our findings on the CE peptide composition. However, not only the keratin subunits but also the CE peptide patterns of ichthyotic patients are identical to those of normal subjects.

The results show that different dermatoses can be distinguished by analysing either the morphological shape or the peptide pattern of the CEs, but further work is needed to evaluate the use of CE analysis in the diagnosis and classification of dermatological disorders.

ACKNOWLEDGMENTS

We are grateful to I. Caravan for her excellent technical assistance and to Drs B. Shroot, U. Reichert and R. Schmidt for their helpful suggestions.

REFERENCES

Cornified e
Cornified envelopes in keratinization disorders

...