Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
Novel and Recurrent Mutations in the Genes Encoding Keratins K6a, K16 and K17 in 13 Cases of Pachyonychia Congenita

Alessandro Terrinoni,*† Frances J. D. Smith,* Biagio Didona,‡‡ Flora Canzona,‡‡ Mauro Paradisi,‡‡ Marcel Huber,‡ Daniel Hohl,‡ Albert David,§ Alain Verloes,¶ Irene M. Leigh,** Colin S. Munro,†† Gerry Melino,† and W. H. Irwin McLean*  

*Epithelial Genetics Group, Human Genetics Unit, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee, U.K.; †IDI-IRCCS, c/o University of ”Tor Vergata”, Rome, Italy; §CHUV, Service de dermato-vénéréologie, Hôpital de Beaumont, Lausanne, Switzerland; ¶Service de genetique medicale, Center Hospitalier, Universitaire de Nantes, Nantes, France; **Wallonia Center for Human Genetics, Liege University, Liege, Belgium; ††Academic Department of Dermatology, Royal London Hospital, London, U.K.; ‡‡Department of Dermatology, Southern General Hospital, Glasgow, U.K.; ‡‡‡IDI-IRCCS, Via Monti di Creta 104, Rome, Italy.

Three patients with pachyonychia congenita types 1 and 2 were studied, two of which had a family history of pachyonychia and 11 of which were sporadic cases. Heterozygous mis-sense or small in-frame insertion/deletion mutations were detected in the genes encoding keratins K6a, K16, and K17 in all cases. Three novel mutations, F174V, E472K, and L469R were found in the K6a gene. Two novel mutations, M121T and L128Q were detected in K16. Similarly, three novel mutations, L95P, S97del, and L99P were found in K17. In addition, we identified recurrent mutations N171del (three instances) and L99P were found in K17. Analysis of both phenotype and genotype data led to the following conclusions: (i) K6a or K16 mutations produce the pachyonychia congenita type 1 phenotype, whereas K17 (or K6b) mutations cause pachyonychia congenita type 2; (ii) the presence of pilosebaceous cysts following puberty is the best indicator of pachyonychia congenita type 2; (iii) prepubescent patients are more difficult to classify due to the lack of cysts; and (iv) natal teeth are indicative of pachyonychia congenita type 2, although their absence does not preclude the pachyonychia congenita type 2 phenotype. This study establishes useful diagnostic criteria for pachyonychia congenita types 1 and 2, which will help limit unnecessary DNA analysis in the diagnosis and management of this genetically heterogeneous group of genodermatoses. Key words: genodermatoses/keratin/mutation/nail dystrophy/pachyonychia congenita. J Invest Dermatol 117:1391–1396, 2001

Keratin intermediate filaments are the main stress-bearing cytoskeletal system within the cytoplasm of epithelial cells (Corden and McLean, 2001). Keratins form heteropolymers consisting of specific pairs of type I and type II proteins that are expressed in a tissue-specific and differentiation-specific fashion (Lane, 1993). Their assembly into 10 nm intermediate filaments is mediated by their central coiled-coil α-helical rod domains (Quinlan et al., 1994). Conserved sequences at both ends of the rod domain, termed the helix boundary motifs, are known to be involved in end-to-end interactions in filament assembly (Steinert et al., 1993; Herrmann et al., 2000). In recent years, genetic mutations affecting the assembly and/or integrity of keratin intermediate filaments have been shown to be a cause of a wide variety of human genetic disorders of keratinization (Fuchs and Cleveland, 1998; Irvine and McLean, 1999). The majority of keratin mutations are dominant acting and mostly involve mis-sense or small in-frame insertion/deletion mutations clustering at the ends of the rod domain of the keratin molecule (Corden and McLean, 1996).

Pachyonychia congenita (PC) is an autosomal dominant group of ectodermal dysplasias characterized by hypotrophic nail dystrophy, hypoplastic keratosis, palmoplantar keratoderma, and other ectodermal changes (Jadassohn and Lewandowsky, 1906; Jackson and Lawler, 1951). Two clinical subtypes of PC have been described: the Jadassohn–Lewandowsky or PC-1 type (OMIM no. 167200) and the Jackson–Lawler or PC-2 variant (OMIM no. 167210). In PC-1, oral leukokeratosis, palmoplantar keratoderma, and follicular keratosis may be observed (Jadassohn and Lewandowsky, 1906). The PC-2 subtype is characterized by the presence of additional features, including multiple pilosebaceous cysts, neonatal teeth, and pili torti (Jackson and Lawler, 1951). In PC-2, oral leukokeratosis can occur (Smith et al., 1998) but appears to be less frequently observed than in PC-1. In our experience, the presence of widespread pilosebaceous cysts following puberty is the best distinguishing feature of PC-2. Histologically, these cysts are heterogeneous; some the result of infundibular hyperkeratosis and others are steatocysts (Munro et al., 1994).

PC-1 has been shown to be caused by mutations in the genes encoding keratins K16 (McLean et al., 1995) and K6a (Bowden et al., 1995). These keratins are coexpressed in the epithelial tissues...
affected in PC-1 (Weiss et al., 1984). In contrast, PC-2 has been shown to result from mutations in the K17 gene (McLean et al., 1995), a keratin expressed in the tissues affected in PC-2 (Troyanovsky et al., 1989; McGowan and Coulombe, 1998). Recently, a mutation in the K6b gene was reported in an extensive family presenting with the PC-2 phenotype (Smith et al., 1998). This mutation, together with coexpression data demonstrated that K6b is the expression partner of K17 in the tissues affected in PC-2 (Smith et al., 1998).

Here, we have analyzed 13 kindreds with PC and have found eight novel and five recurrent keratin mutations.

**MATERIALS AND METHODS**

**Sample collection** Genomic DNA samples were extracted from peripheral blood lymphocytes of the patients by standard methods.

**Mutation detection and confirmation** PCR primers and programs used for specific amplification of the mutation hotspot regions of the genes encoding K6a and K16 without coamplification of homologous pseudogenes and/or isogenes, were described previously (Smith et al., 1999a, b). Exon 1 of the K17 gene was specifically amplified as reported previously (Covello et al., 1998). The full-length functional K17 gene (KRT17A) was specifically amplified using primers K17P8 and K17P13 (Table I) using standard PCR buffer containing 1.5 mM MgCl2 (Perkin-Elmer, Foster City, CA) and 4% dimethyl sulfoxide. This reaction was subjected to a “hot start” with 1 U of Long Range PCR enzyme mix (Boehringer, Mannheim, Germany) and the following PCR conditions were used: (94°C, 5 min) × 1; (94°C, 30 s, 58.5°C, 1 min, 72°C, 2.5 min) × 34; (72°C, 5 min) × 1. Mutation detection was performed by direct sequencing of PCR products using the amplification oligonucleotides or additional internal primers. Sequences were compared with that of an unaffected, unrelated control sample. Sequence analysis was performed using Big Dye terminator chemistry on an ABI 377 genetic analyzer (Perkin-Elmer).

For the novel mutations, we performed a series of restriction enzyme digestions of short PCR fragments carrying the mutations and of 50 normal unrelated controls to exclude these sequence changes as polymorphisms in the normal population. In the case of K16, a short PCR fragment specific for exon 1 of the functional KRT16A gene was used. In the case of K6a and K17 genes, nested PCR was used to circumvent pseudogene and/or isogene interference with specific PCR fragments generated as above. Short fragments appropriate for digestion were produced by reamplification of a 1:1000 dilution of the full-length PCR products. For confirmation of K6a mutation F174V and K17 mutation S97del, mismatch primers were used to create new restriction sites dependent on the presence of the mutation. In all other cases, normally occurring sites were exploited. The PCR reactions and enzymes used in this analysis, together with the fragment sizes generated from digestion of normal and mutant alleles are outlined in Table II. The PCR primers used in this analysis and their optimized annealing temperatures are listed in Table I. Primer sequences are listed in Table I.

**RESULTS**

**Case reports** In this study we have collected 13 patients, clinically heterogeneous, diagnosed as PC-1 (Table III, patients 1–9) and PC-2 (Table III, patients 10–13). In two cases (patients 6 and 12), there was a clear family history of pachyonychia with typical features of autosomal dominant inheritance. All other patients were sporadic cases of pachyonychia. Using the presence or absence of pilosebaceous cysts as the key diagnostic feature, we initially classified the 13 patients into the PC-1 and PC-2 categories, as shown in Table III. It should be noted that these cysts only appear at puberty and so younger patients are more difficult to classify. As can be seen from Table III, other features often used to distinguish the two groups, such as oral leukokeratosis in PC-1 or natal teeth in PC-2, are not fully expressed and therefore are less reliable as diagnostic indicators. The presence of natal teeth, however, is a useful indicator of PC-2 in prepubescent patients, although the absence of natal teeth does not preclude a diagnosis of PC-2. It should be noted that in some cases of PC-1, follicular hyperkeratosis can occur, such as in patient 7 here (Table III). These lesions may be mistaken for pilosebaceous cysts and therefore lead to misdiagnosis as PC-2.

The severity of palmoplantar keratoderma varied widely within both PC types. Most were mildly affected with keratoderma confined only to the pressure areas of plantar epidermis with little or no palmar involvement. Some cases, however, notably patient 3, had severe diffuse keratoderma of both palms and soles, resembling epidermolytic palmoplantar keratoderma. One case (patient 6), suffered hyperkeratotic lesions of the conjunctiva, when this tissue was stressed by use of contact lenses. This feature has not previously been reported in pachyonychia.

**Novel and recurrent mutations in PC** Patients were screened for mutations in the K6a, K16, and K17 genes, which have been previously associated with the PC-1 and PC-2 types of the disease (Bowden et al., 1995; McLean et al., 1995; Smith et al., 1998). In the patients diagnosed as PC-1, the entire coding regions of the K6a and K16 genes were amplified by the long-range PCR protocols described previously (Smith et al., 1999a, b). K6a mutations were detected in seven of the PC-1 individuals examined (patients 1–7;
Table III. Phenotype and genotype data for pachyonychia patients studied

<table>
<thead>
<tr>
<th>Patient</th>
<th>PC type</th>
<th>Inheritance</th>
<th>PC</th>
<th>PPK</th>
<th>Oral</th>
<th>Ocular</th>
<th>FH</th>
<th>Cysts</th>
<th>NT</th>
<th>Mutation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a F174V (1A domain F10V)</td>
</tr>
<tr>
<td>2</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a E472K (2B domain E117K)</td>
</tr>
<tr>
<td>3</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a L469R (2B domain L114R)</td>
</tr>
<tr>
<td>4</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a N171del (1A domain N8del)</td>
</tr>
<tr>
<td>5</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a F174S (1A domain F10S)</td>
</tr>
<tr>
<td>6</td>
<td>PC-1</td>
<td>Familial</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a N171del (1A domain N8del)</td>
</tr>
<tr>
<td>7</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K6a N171del (1A domain N8del)</td>
</tr>
<tr>
<td>8</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K16M121T (1A domain M4T)</td>
</tr>
<tr>
<td>9</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K16L128Q (1A domain L11Q)</td>
</tr>
<tr>
<td>10</td>
<td>PC-1</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K17L95P (1A domain L15P)</td>
</tr>
<tr>
<td>11</td>
<td>PC-2</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K17S97del (1A domain S13del)</td>
</tr>
<tr>
<td>12</td>
<td>PC-2</td>
<td>Sporadic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K17L99P (1A domain L15P)</td>
</tr>
<tr>
<td>13</td>
<td>PC-2</td>
<td>Familial</td>
<td>+</td>
<td>+</td>
<td>–</td>
<td>+</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>K17: R94H (1A domain R10H)</td>
</tr>
</tbody>
</table>

*a* Oral leukokeratosis.  
*b* Keratosis of the ocular mucosa.  
*c* Follicular hyperkeratosis.  
*d* Pilosebaceous cysts i.e. steatocysts and/or eruptive vellus hair cysts.  
*e* Natal teeth.  
*f* Numbers in parenthesis refer to the 1A or 2B domain residue numbering system. Novel mutations indicated in bold type, previously reported mutations in plain text. PPK, palmoplantar keratoderma.

Figure 1 Novel mutations in the K6a gene.  
(a) Normal DNA sequence of K6a exon 1, region encoding the helix initiation motif. (b) DNA sequence as shown in (a), derived from patient 1, showing heterozygous missense mutation 520T > G, predicting the amino acid change F174V (or F10V in the 1A domain). (c) Normal DNA sequence of K6a exon 7, region encoding the helix termination motif. (d) DNA sequence as shown in (c), derived from patient 2, showing heterozygous missense mutation 1406T > G, predicting the amino acid change L469R (or L114R in the 2B domain). (e) DNA sequence as shown in (c), derived from patient 3, showing heterozygous missense mutation 1414G > A, predicting the amino acid change E472K (or E117K in the 2B domain). (f) Confirmation of mutation F174V by HinII digestion. M, molecular weight markers. *Lane 1,* digest derived from patient 1 showing digested mutant bands; *lanes 2–8,* digests derived from normal unrelated controls. (g) Confirmation of mutation L469R by BstNI digestion. M, molecular weight markers. *Lane 1,* digest derived from patient 2 showing undigested mutant band; *lanes 2–8,* digests derived from normal unrelated controls. (h) Confirmation of mutation E472K by BseRI digestion. M, molecular weight markers. *Lanes 1, 3–8,* digests derived from normal unrelated controls; *lane 2,* digest derived from patient 3 showing undigested mutant band.
Table III). Three of these were novel mutations: F174V, L469R, and E472K detected in patients 1–3, respectively (Fig 1a–e; Table III). A further four patients carried previously reported mutations N171del (patients 4, 6, and 7; Bowden et al, 1995) and F174S (patient 5; Smith et al, 1999a) in the K6a gene (Table III, molecular data not shown). Patients 8 and 9, also diagnosed as PC-1, were found to carry novel heterozygous missense mutations in the K16 gene, M121T and L128Q, respectively (Fig 2a–c; Table III). Therefore, all patients diagnosed as having the PC-1 variant were found to carry mutations in the K6a or K16 genes.

A mutation detection strategy for the entire coding region of the functional K17 gene was developed based on long-range PCR. By this means, molecular analysis of the K17 gene was performed in the four patients diagnosed as PC-2 on the basis of pilosebaceous cysts (Table III). In one case, the presence of natal teeth was an additional indicator of PC-2 (patient 12). Three novel K17 mutations were found, L95P, S97del, and L99P in patients 10–12, respectively (Fig 3a–d; Table III). The fourth PC-2 case was found to have a recurrent mutation in K17 (R94H), which has previously been reported (Covello et al, 1998; Smith et al, 1997). Of particular interest was mutation S97del detected in a sporadic case, patient 11. This 3 bp deletion is similar to a 3 bp deletion mutation previously identified in K16 in a sporadic case of PC-1 (Smith et al, 1999b).

All novel mutations were excluded from a population of 50 ethnically matched, normal, unrelated individuals by restriction digestion of short PCR products spanning the appropriate regions of the K6a, K16, or K17 genes (Figs 1f–h, 2d, e, and 3c, f). Therefore, these defects were excluded as common polymorphisms in the human population by this standard genetic test (Cooper and...
Krawczak, 1993). Population screening for the recurrent mutations was performed in the original reports of these defects (Bowden et al., 1995; Covello et al., 1998; Smith et al., 1999a).

DISCUSSION

Mutation detection strategies for PC mutation hotspots

Here, we describe eight novel mutations in patients with PC: mutations F174V, E472K, and L469R in K6a; M121T and L128Q in K16; and L95P, S97del, and L99P in K17. In addition, we report five new occurrences of three previously reported mutations, N171del and F174S in K6a and R94H in K17 (data not shown). All the mutations described here occur in the helix boundary motif sequences of these keratins, located at the start of the helix 1A domain and the end of the helix 2B domain. To allow comparison with mutations in other keratins, the 1A and 2B domain residue numbers are shown in Table III alongside the codon numbers for these mutations.

Of the recurrent mutations, N171del was identified in one familial and two sporadic cases here (patients 4, 6, and 7) and previous reports of K6a (Bowden et al., 1995). The analogous mutation has also been reported in the K4 gene in two cases of white sponge nevus (Rugg et al., 1995). This mutation is consistent with DNA polymerase slippage during replication of three tandem CAA repeats present in exon 1 of several type II keratin genes, including K4 and K6a (Cooper and Krawczak, 1993). The novel 3 bp K17 mutation S97del reported here probably occurred through a similar slippage mechanism, as it involves two tandem repeats of CTT (Fig. 3). Similarly, the other recurrent mutation, R94H in K17, occurs in a CpG-containing arginine codon found in exon 1 of most type I keratins. Deamination of CpG dinucleotides is the most common mechanism underlying point mutations in humans (Cooper and Krawczak, 1993). Thus, genomic instability within the first exon of the K6a and K17 genes probably explains why these are the most common mutations reported in PC.

There are no very obvious causative mechanisms for the other mutations reported here; however, most PC mutations reported to date, including those here, occur in the helix boundary motif sequences of the keratin polypeptides involved. The exceptions are a deletion involving the V1 domain of K16 in a keratinous palmpomnlar nevus (Terrinoni et al., 2000) and a mutation in the central 2B domain of K16 in a case of late-onset PC (Connors et al., 2001). The helix boundary motifs are mutational hotspots for all keratin disorders characterized to date (Fuchs and Cleveland, 1998; Irvine and McLean, 1999) and are encoded by exons 1 and 6 in type I keratin genes and exons 1 and 7 in type II keratin genes. Therefore, in PC like other keratin disorders, mutation analysis should focus first on these exons and only when these are excluded is it worthwhile screening other regions of these genes. It should also be noted that we have previously screened a few cases of PC that do not fall into the PC-1 or PC-2 classifications and detected no mutations in any of the K6a, K6b, K16, or K17 genes (Smith and McLean, unpublished data). Therefore, there are some cases of PC where an unknown gene or genes may be involved.

The keratin genes that are known to be involved in PC are particularly difficult to analyze due to the presence of multiple isoforms and/or pseudogenes (Troyanovsky et al., 1992; Takahashi et al., 1995; Smith et al., 1999b). The mutation detection strategy that we have employed here for K6a and K16 is based on long-range PCR covering all or most of the target gene (Smith et al., 1999a, b). For the K17 gene, a specific long-range PCR is reported here, allowing analysis of all exons of this gene in the future. Only one case of a K6b mutation has been reported (Smith et al., 1998). Collectively, these methods allow detection of most PC mutations without coamplification of nonfunctional or irrelevant genes.

Diagnosis and genotype-phenotype correlation in PC

Here, we were able to classify our patients as PC-1 or PC-2 on the basis of the clinical phenotype, as outlined in Table III. The most useful distinguishing feature for PC-2 patients is the presence of pilosebaceous cysts from puberty. Younger patients are more difficult to classify, although very prominent oral lesions are more typical of PC-1 and natal teeth, when present, are indicative of PC-2 (Table III). The differences in the PC-1 and PC-2 phenotypes can be largely explained by the difference in expression patterns between the K6a/K16 and K6b/K17 expression pairs (McGowan and Coulombe, 2000). K6b/K17 are expressed at higher levels in the pilosebaceous unit than K6a/K16, explaining the pilosebaceous cysts in PC-2. Conversely, K6a/K16 are more widely expressed in oral epithelia, explaining the greater predominance of oral leukokeratosis in PC-1 (Table I).

In conclusion, we report keratin mutations in 13 cases of PC. The genotype-phenotype correlation, mutation clustering data, and long-range PCR methodology presented here should serve as useful guidelines for improved diagnosis and molecular genetic analysis of future cases of this group of keratinizing disorders.

We would like to thank the patients and their families for participation in this study. Thanks also to Sarah Tingue, Molecular Genetics Laboratory, Ninewells University Hospitals NHS Trust for genomic DNA extraction and Andrew J. Casidy, Molecular Genetics Analysis Facility, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee, for DNA sequencing. This work was supported by Telethon grant E872, AIRC, MURST 40%, and EU Grant QLG1-1999-00739 (to G. M.). W.H.I.M. and F.D.J.F. are funded by the Royal United Senior Research Fellowship (to W.H.I.M.) and this work was also supported by the Dystrophic Epidermolysis Bullosa Research Association (DEBRA) UK (to W.H.I.M.).

REFERENCES


Jackson ADM, Lawler SD: Pachyonychia congenita: a report of six cases in one family. Ann Eugen 16:142±146, 1951


Smith FJD, Corden LD, Rugg EL, et al: Mis-sense mutations in keratin 17 cause...


Steinert PM, Yang JM, Bale SJ, Compton JG: Concordence between the molecular overlap regions in keratin intermediate filaments and the locations of keratin mutations in genodermatoses. Biochim Biophys Acta 197:840–848, 1993


