Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
Novel Regulation of Keratin Gene Expression by Thyroid Hormone and Retinoid Receptors*

(Received for publication, October 30, 1995)

Marjana Tomić-Cantić¶¶, Doris Day‡, Herbert H. Samuelsi**, Irwin M. Freedberg† ‡, and Miroslav Blumenberg¶¶¶

From the ‡Ronald O. Perelman Department of Dermatology, §Department of Medicine, **Department of Pharmacology, ††Department of Cell Biology, and ¶¶Department of Biochemistry, New York University Medical Center, New York, New York 10016 and the ¶¶Institute Vinca, 11000 Belgrade, Yugoslavia

Expression of keratin proteins, markers of epidermal differentiation and pathology, is uniquely regulated by thyroid hormone receptors for retinoic acid (RAR) and thyroid hormone (T3R) and their ligands: it is constitutively activated by unliganded T3R, but it is suppressed by ligand-occupied T3R or RAR. This regulation was studied using gel mobility shift assays with purified receptors and transient transfection assays with vectors expressing various receptor mutants. Regulation of keratin gene expression by RAR and T3R occurs through direct binding of these receptors to receptor response elements of the keratin gene promoters. The DNA binding "C" domain of these receptors is essential for both ligand-dependent and independent regulation. However, the NH2-terminal "A/B" domain of T3R is not required for either mode of regulation of keratin gene expression. Furthermore, v-ErbB, an oncogenic derivative of cT3R, also activates keratin gene expression. In contrast to the previously described mechanism of gene regulation by T3R, heterodimerization with the retinoid X receptor is not essential for activation of keratin gene expression by unliganded T3R. These findings indicate that the mechanism of regulation of keratin genes by RAR and T3R differs significantly from the mechanisms described for other genes modulated by these receptors.

Hormones and vitamins, such as thyroid hormone (T3)1 and all-trans-retinoic acid (RA), are important regulators of development and differentiation in general and of the epidermis in particular. The effects of vitamin A, a precursor of RA, on the skin were observed first in 1922 (1). Since that time, the skin has been a model tissue for the study of RA action. It has been shown that hypovitaminosis A causes epidermal hyperkeratinization, while non-keratinizing tissues, such as conjunctiva and cornea, become keratinized. Conversely, hypertovitaminosis A causes inhibition of keratinization, hyperplasia, and a block of terminal differentiation (1–6). Similarly, thyroid hormone deficiency results in a number of skin changes, including hyperkeratosis (7–10), and the thyroid hormone excess causes increased epidermal cell division (11). Similar effects of RA and T3 were observed in keratinocytes in vitro (2, 9, 12).

Keratins are the intermediate filament network proteins in many epithelia. Their expression is precisely controlled in various physiological and pathological states of the epidermis. When the basal keratinocyte becomes detached from the basement membrane, its commitment to differentiation is announced by suppression of the basal cell-specific keratins K5/K14 and the induction of the differentiation-specific keratins K1/K10 (13, 14). In wound healing and hyperproliferative processes, keratinocytes express the activation-specific keratin pair K6/K16 (15, 16). During inflammation, keratin K17 is expressed, whereas transformed keratinocytes express keratins K8/K18 (17, 18).

Because a fairly large number of keratin genes are suppressed by RA and T3, these genes provide a unique opportunity to study the mechanisms of negative regulation by T3R and RAR on native regulatory elements. We have reported previously that keratin gene expression is suppressed by RA or T3 (19–21). To examine this regulation in more detail, we studied the response of three different keratin promoter-CAT constructs (K5, K14, K17) to RAR or T3R, in the presence or absence of their cognate ligands using mutants of T3R in transfection and gel mobility shift experiments (22–24). These promoters were chosen because K5 and K14 keratins are specific for the basal layer of the epidermis, the layer most proximal to the source of RA in vivo, whereas K17, although not present in healthy skin, is a marker of various inflammatory processes. Furthermore, all three promoters are expressed at high levels when transfected into cells of epithelial origin.

Our results show that T3R regulates keratin genes in a unique manner: unliganded T3R leads to activation while the addition of T3 results in suppression. The NH2-terminal "A/B" domain of cT3Ra is not required for keratin gene regulation while the ligand binding and the DNA binding domains are essential. In addition, we found that v-ErbB is a constitutive activator of keratin genes and that it blocks ligand-dependent suppression by T3R and RAR. Furthermore, we found that T3R does not form heterodimers with RXR when bound to K14RE, and that addition of T3 promotes monomer binding at the expense of the homodimer. Last, mutants which do not form heterodimers with RXR do mediate constitutive activation of keratin genes. Taken together these results suggest that the regulation of keratin genes may be mediated by monomers, or perhaps homodimers, of T3R.
RA and T3 Suppression of Keratin Genes

MATERIALS AND METHODS

Plasmids and Their Growth and Purification—Plasmids pK14CAT, pK5CAT, pK117CAT, and pRSVZ have been described previously (13, 17). The plasmids containing human RARα, RARβ, and RARγ nuclear receptor genes were gifts from Dr. P. Chamberlain. Plasmids cT3Ra(51-408), NiT(1-20) terminal deletion mutant of T3R, cT3Ra(120-408) DBD mutation, and E. coli cell growth was assayed by saturation density in LB medium. DNA was extracted and purified using the MagicPrep Prep Kit from Promega.

Cell Growth—HeLa cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% calf serum at 37°C in a 5% CO2 atmosphere in media containing penicillin and streptomycin as described (20, 27). The day before transfection, cells were plated onto 60-mm dishes. Four hours before transfection, the medium was changed to DMEM supplemented with 10% calf serum depleted of RA and T3 as described (20).

Transfection Using CaPO4 Clump—We have generally followed published procedure for cells that were at 80% confluence (27). At the time of transfection into each dish, 1 μg of each plasmid (the CAT plasmid, 1 μg of the GAL4 DNA binding domain of the CAT plasmid 1 μg of pRSVZ reference plasmid and a sufficient amount of carrier to bring the total to 10 μg of DNA. The cells were harvested 48 hours post transfection by scraping into 5 ml of phosphate-buffered saline, washed once more in phosphate-buffered saline, and resuspended in 150 μl of 0.25 M Tris buffer, pH 7.8. All transfections were done in duplicate plates, and each transfection experiment was repeated two to five times.

Electrophoretic Mobility Shift Assays—E. coli-expressed hRARα and cT3Ra were purified as described previously (28). Oligonucleotides were synthesized on a Pharmacia Gene Assembler Plus DNA Synthesizer. The sequence of oligonucleotides flanked by HindIII overhangs (5′-AGCTTTTAAATACGACTCACTATAGGGAGGTCGTTTTAGGAAAGCCCCAGGACGATCT-3′) were used to label the probe by random primer labeling (30). The probe was labeled with 32P-dATP, using the Klenow fragment of E. coli DNA polymerase I. 30,000 cpm of the resulting probe was mixed with 2.5 μl of purified receptor proteins and incubated first for 30 minutes on ice and then for 10 minutes at +4°C. A gel shift analysis was done in a 12% gel in 2× TBE buffer at 75 V for 2 hours.

RESULTS

Novel Regulation of the Keratin Promoters by Retinoic Acid and Thyroid Hormone Receptors—To analyze regulation of keratin gene expression by RA and T3, we used the promoters of the K14, K5, and K17 keratin genes linked to a CAT reporter gene. HeLa cells were co-transfected with the keratin promoter-CAT constructs along with vectors expressing wild type and mutants of chicken T3Ra and human RARs in the presence or absence of the respective ligands. We chose HeLa cells because we have shown previously that transfected keratin gene promoters behave identically in HeLa cells and in human epidermal keratinocytes (20, 21). However, the endogenous receptors are expressed at much lower levels in HeLa cells, which facilitates the interpretation of results with transfected receptors.

In the absence of RA, the RARs are without effect (Fig. 1). In the presence of RA, all three retinoic acid receptors (hRARα, hRARβ, and hRARγ) suppress expression of each of the keratin gene promoters 5- to 6-fold (Fig. 1). In contrast, TREPCAT, containing an optimized thyroid hormone/retnoic acid response element, was stimulated approximately 30-fold by all three receptors in the presence of RA.

To test whether T3 also regulates keratin gene expression, we co-transfected HeLa cells with the keratin-promoter CAT constructs and a cT3Ra expression vector and then incubated the cells in the presence or absence of T3. As previously found, the control reporter TREPCAT was stimulated approximately 35-fold by T3 and suppressed by unliganded T3R approximately 8-fold (23, 29). In contrast, cT3Ra has the opposite effect on keratin gene expression: unliganded T3R stimulates keratin K5, K14, and K17 gene promoters approximately 3-fold, whereas with T3 the basal expression of the three keratin promoter constructs is inhibited about 5-fold (Fig. 1). The data show that RA without co-transfected hRARα are due to the low levels of endogenous RARs.

hRARα and cT3Ra Bind to a Functional Element in the K14 Gene Promoter—To study the interaction of T3R and RAR with receptor responsive sequences, we focused on the -96/-51 region of the K14 gene promoter in which we previously identified a TRE/RARE using site-specific mutagenesis (21). Gel mobility shift DNA binding assays were performed using hRARα and cT3Ra expressed and purified from E. coli (Fig. 3). cT3Ra formed two mobility complexes with the K14R probe, the monomer and the homodimer (28). cT3Ra predominantly binds K14RE as a homodimer. Binding is specific because if can be efficiently competed with a 100 μM excess of cold K14RE and consensus TREpal. A mutated TREpal that does not bind cT3Ra (28) does not compete for the binding of cT3Ra to K14RE (Fig. 3).

Similarly, hRARα predominantly forms a homodimer complex with with K14RE (Fig. 3). Binding is specific because it can be competed with an excess of K14RE or TREpal but not with nTRE. These results confirm that the -96/-51 region of the K14 promoter contains a functional TRE/RARE that binds both cT3Ra and hRARα receptors.

Because the addition of T3 changes transcriptional regulation from stimulation to repression, we investigated the effects of ligand binding. Interestingly, the addition of T3 dramatically inhibits the formation of homodimers of cT3Ra while increasing the monomer binding to K14RE (Fig. 4A). In contrast, addition of RA did not change the binding pattern of hRARα. A small change in mobility is due to the conformational change caused by ligand binding to the receptor (28).

The presence of T3 or RA did not change the pattern of

binding of cT3Ra or hRARα to the TREpal as shown in Fig. 4B. Again there is small change in mobility of the complexes due to a conformational change. The K14RE has a lower binding affinity when compared with the optimized TREpal sequence, which is similar to other previously described native TRE/RAREs (30, 31).

We analyzed the combined effects of the receptors using gel mobility shift assays. In the absence of ligands three different complexes were detected: homodimers of cT3Ra, heterodimers of cT3Ra/RARα, and homodimers of hRARα (Fig. 4A, last four lanes). Addition of T3 inhibited the binding, whereas addition of RA did not affect it.

The Amino-terminal Region of the T3R Is Not Essential for Keratin Gene Regulation—To study the mechanism of keratin regulation by cT3Ra, we used variants of the receptor that have specific deletions and mutations in the NH2-terminal A/B region, the DNA binding domain, or the ligand and heterodimerization domains, as well as v-ErbA (22–24). We first analyzed the role of the 50-amino acid NH2-terminal region of cT3Ra, because this region has been reported to be important for hormone-independent activation of a sequence in the Rous sarcoma virus LTR (RSV-LTR) (22, 32). The receptor mutant cT3Ra(51–408) has a complete deletion of the 50-amino acid NH2-terminal A/B domain but has normal DNA binding and ligand binding properties (22). Both in the absence and in the presence of T3, cT3Ra(51–408) functions essentially identical to the wild type cT3Ra (compare Fig. 5A with Fig. 1). Thus, the NH2-terminal A/B region of cT3Ra is not essential for either constitutive activation or ligand-dependent inhibition of keratin promoter activity.

The DNA Binding Domain (DBD) of cT3Ra Is Essential for Keratin Gene Regulation—In contrast with the cT3Ra(51–408), a mutant lacking both the DNA binding domain and the NH2-terminal A/B region cT3Ra(120–408); also referred to as
Fig. 3. **cT3Ra and hRARα specifically bind K14RE.** Autoradiograms of the gel mobility shift assay with K14RE probe are presented with cT3Ra (shown on the left) and hRARα (shown on the right). Binding of both receptors is efficiently competed with 100x excesses of cold K14RE (Sf) and TREpal but not with mTRE DNA. Note significant increase in the amount of free probe in lanes competed with K14RE and TREpal.

![Autoradiogram A](#)

![Autoradiogram B](#)

Fig. 4. **Effects of ligands on binding and dimerization of cT3Ra and hRARα.** Autoradiograms of the gel mobility shift assays are presented with K14RE (A) and TREpal probe (B).

DBD− (24), did not influence keratin promoter activity (Fig. 5B). cT3Ra(120–408) has been shown to act as a dominant negative inhibitor of wild type T3Rs and RARs (26, 28), indeed it blocked the RA-dependent stimulation of TREpCAT (Fig. 6A). The inhibitory effect was enhanced by the addition of T3 to the medium. Unexpectedly, the suppression of keratin genes by hRARα was not affected by addition of the cT3Ra(120–408) in the presence or absence of T3 (Fig. 5A).

In view of the fact that cT3Ra(120–408) has no effect on regulation by hRARα, we were surprised to find that it blocks the effects of cT3Ra (Fig. 6B). The cT3Ra(120–408) mutant efficiently blocked both effects of wild type cT3Ra on the keratin K14 gene promoter: constitutive activation by unliganded receptor and the inhibition found in the presence T3. The blocking effect is not mediated through direct competition for the DNA binding, because cT3Ra(120–408) is not a DNA-binding protein. The inhibition most likely result from the dimeric interactions with cT3Ra (23, 24).

v-ErbA **Constitutively Activates Keratin Gene Promoters**—v-ErbA is an oncogenic variant of cT3Rα that binds T3 with very low affinity and constitutively represses promoters that contain a number of positive regulatory elements, including the TREp in TREpCAT (Fig. 7A). In contrast with the repression seen with other elements, we find that v-ErbA constitutively activates the K5, K14, and K17 promoters about 2–3-fold, which is similar to the activation found for unliganded wild type cT3Ra (Fig. 7A). v-ErbA has also been found to act as a weak dominant negative inhibitor of wild type T3Rs and RARs (24). This effect is thought to result from direct competition for the DNA binding site rather than from interference.
Fig. 6. The DBD mutant specifically interferes with the regulation by T3R and not by RAR. A, the cT3Rα(120–408) (DBD-) mutant of the T3R does not block the suppression of keratin gene expression by RARα. Note that it blocks the induction of the TREpCAT. B, the cT3Rα(120–408) (DBD-) mutant efficiently blocks regulation of K14 keratin gene expression by T3R, both the suppression and the induction in the presence and absence of T3, respectively.

with heterodimerization with RXR (24). In contrast to cT3Rα(120–408), which did not affect inhibition by hRARα
RA, we found that v-ErbA efficiently blocked the effect of hRARα-RA (Fig. 7B). v-ErbA was equally efficient in blocking T3-dependent suppression of keratin promoter activity by cT3Rα (Fig. 7C). Thus, v-ErbA is not only a constitutive activator of keratin gene expression, but also an inhibitor of the suppression of keratin genes mediated by RA and T3.

Constitutive Activation of Keratin Gene Expression by T3R
Does Not Require Heterodimerization with RXR—To study the role of homo- and heterodimerization in the constitutive activation of keratin genes by cT3Rα, we used mRXRβ and cT3Rα receptors in our gel mobility shift experiments (Fig. 8A). cT3Rα can bind as three complexes with TREpal in the presence of mRXRβ. These can be identified by size as T3R monomer, T3R homodimer, and RXR-T3R heterodimer. Addition of T3 did not change the binding pattern. In contrast RXR-T3R heterodimers are not formed with K14RE (Fig. 8A). The two complexes identified are the monomer and the homodimer of T3R. The addition of hormone promotes monomer binding at the expense of

Fig. 7. Regulation by v-ErbA. A, by itself, v-ErbA constitutively stimulates keratin gene expression. B, v-ErbA blocks suppression of the keratin gene expression by RARα. C, v-ErbA blocks T3-dependent suppression of the K14 gene expression and induction of TREpCAT by T3R. The homodimer. These results suggest that the regulation of keratin gene expression does not require heterodimer formation with RXR. To investigate this possibility further, we used two cT3Rα mutants in the ninth heptad of the ligand binding domain, cT3Rα(L365R) and cT3Rα(L372R), which have been
shown to be critical for heterodimerization with RXR (23). These mutants bind to response elements as homodimers as efficiently as the wild type cT3Rα, but do not bind as heterodimers with RXR in the absence of T3 (23). With cT3Rα(L365R), but not with cT3Rα(L372R), T3 mediates a conformational change that results in the formation of cT3Rα/RXR heterodimers (23). The binding pattern at cT3Rα(L372R) mutant was identical to that of the wild type receptor; it formed two complexes with K14RE: the monomer and the homodimer (Fig. 8B). The addition of mRXRβ did not change the binding pattern, as expected, because this mutant is not capable of forming heterodimers with RXR receptors.

cT3Rα(L365R) stimulates the expression of TREpCAT in the presence of T3, but does not suppress basal expression in the absence of T3 (Fig. 8C). In contrast, cT3Rα(L365R) regulates keratin promoters similarly to wild type cT3Rα: it activates without T3, while it suppresses keratin expression in the presence of T3 (Fig. 8C). The mutant cT3Rα(L372R), which does not form heterodimers with or without T3, does not stimulate or repress TREpCAT, but can constitutively activate keratin gene promoters (Fig. 8C). cT3Rα(L372R) does not mediate negative regulation by T3 because it has a very low affinity for ligand (23). Constitutive activation of keratin promoters by the two mutants with the altered ninth heptad, cT3Rα(L365R) and cT3Rα(L372R), together with the results from gel mobility shift experiments support the notion that T3-independent stimulation of keratin gene expression by T3R occurs by a mechanism that is independent of heterodimerization with RXR.

DISCUSSION

The regulation of keratin gene expression by T3R and RAR described in this study is the inverse of the more commonly studied positive regulation of transcription. First, T3R without T3 constitutively activates keratin gene expression instead of silencing or suppressing the level of basal expression. Second, in the presence of T3, the constitutive activation of T3R is not only reversed, but the extent of transcriptional activity is further inhibited approximately 5-fold below the level of basal expression. Although RAR does not mediate constitutive activation, incubation with RA also leads to negative regulation. A number of natural promoters have been reported to be negatively regulated by either RAR or T3R and their ligands, but not by both receptors (35, 36). However, the large family of keratin genes is negatively regulated by both T3 and RA via their cognate receptors. Furthermore, keratin genes are the first group of genes reported which are not only suppressed by T3R in the presence of its ligand, but are also activated by unliganded T3R.

We provide three new lines of evidence for a direct effect of RAR and T3R on keratin gene promoters. Previously we have identified an RARE/T3RE in the K14 promoter using site-specific mutagenesis (21). In this paper we have shown that the identified responsive element physically binds nuclear receptors. We also show that the oncogenic derivative v-ErbBα is an efficient competitor of the ligand-dependent regulation of keratin gene expression by RAR and T3R. Since it appears that v-ErbBα acts by competing for DNA binding rather than by formation of nonfunctional heterodimers (24), our data with v-ErbBα receptor support a direct regulatory mechanism. Furthermore, deletion of the DBD from the T3R aborts keratin gene regulation. Taken together, our results suggest that rega

 pare with Fig. 1), while cT3Rα(L372R) constitutively stimulates keratin gene expression, similar to v-ErbBα (Fig. 7A). Note the difference in regulation of TREpCAT.
RA and T3 Suppression of Keratin Genes

The NH2-terminal region for constitutive activation (32). In addition, v-ErbA also acts as a constitutive activator of keratin gene expression. This indicates that the putative transactivation domain that is deleted in v-ErbA at the COOH-terminal end of cT3R does not mediate constitutive activation (25). Thus constitutive activation may be mediated by another, so far unidentified, region of the receptor. This finding is consistent with the previous observation that cT3Ra(1-392), which lacks this putative activation domain, can constitutively activate the growth hormone or prolactin gene promoters in GH4C1 cells (26).

This novel mechanism of gene regulation may be particularly important in those tissues in which both T3 and RA play important roles determine the cell phenotype. While in some cells regulation that involves RXR integrates the response to hormones and vitamins, in the epidermis the response to each signal may need to be clearly distinct from responses to all other signals. If so, the RXR-independent regulation described here may provide the appropriate discrimination of signals reaching the epidermis. We expect, however, that this novel regulation operates in other systems as well.

Acknowledgments—We thank P. Chambon for gifts of plasmids and K. Ozato for gift of RXR protein. We thank J. Filipovska for cloning of the functional K17 gene, E. Hadzic for help in gel-shift experiments, and B. Raaka for critical reading of the manuscript. We also thank E. Collado-Nunez for the synthetic oligonucleotides, J. Avins for secretarial help, and especially William E. Shue and Daphne Demas for the photography and artwork.

REFERENCES

Fig. 9. Summary of keratin gene regulation by various mutants of T3R. Asterisks represent mutations and differences in sequence of v-ErbA versus cT3R, the wild type. Other mutations and deletions are indicated in the respective amino acid numbers.
RA and T3 Suppression of Keratin Genes