Use of Articles in the Pachyonychia Congenita Bibliography

The articles in the PC Bibliography may be restricted by copyright laws. These have been made available to you by PC Project for the exclusive use in teaching, scholarship or research regarding Pachyonychia Congenita.

To the best of our understanding, in supplying this material to you we have followed the guidelines of Sec 107 regarding fair use of copyright materials. That section reads as follows:

Sec. 107. - Limitations on exclusive rights: Fair use
Notwithstanding the provisions of sections 106 and 106A, the fair use of a copyrighted work, including such use by reproduction in copies or phonorecords or by any other means specified by that section, for purposes such as criticism, comment, news reporting, teaching (including multiple copies for classroom use), scholarship, or research, is not an infringement of copyright. In determining whether the use made of a work in any particular case is a fair use the factors to be considered shall include - (1) the purpose and character of the use, including whether such use is of a commercial nature or is for nonprofit educational purposes; (2) the nature of the copyrighted work; (3) the amount and substantiality of the portion used in relation to the copyrighted work as a whole; and (4) the effect of the use upon the potential market for or value of the copyrighted work. The fact that a work is unpublished shall not itself bar a finding of fair use if such finding is made upon consideration of all the above factors.

We hope that making available the relevant information on Pachyonychia Congenita will be a means of furthering research to find effective therapies and a cure for PC.
PART IV. PEPTIDES WITH AUTOCRINE ACTIONS

Signal Transduction for Proliferation and Differentiation in Keratinocytes

STUART H. YUSPA," HENRY HENNINGS,6
ROBERT W. TUCKER, b SUSAN JAKEN,c
ANNE E. KILKENNY, a AND DENNIS R. ROOPa

aLaboratory of Cellular Carcinogenesis and Tumor Promotion
Building 37, Room 3B25
National Cancer Institute
Bethesda, Maryland 20892
bJohns Hopkins Oncology Center
Baltimore, Maryland 21205
cW. Alton Jones Cell Science Center
Lake Placid, New York 12946

INTRODUCTION

The analysis of epidermal growth and differentiation in situ and by the use of in vitro model analogues has been extraordinarily informative to cell and molecular biologists. These studies have revealed the relationship of growth factors to growth control, the regulation of expression of keratins and other differentiation-specific genes and aberrations in function associated with pathological states, especially neoplasia, among other findings. These studies have also suggested a previously unappreciated function of epidermis as a secretory tissue. Secretory activity of keratinocytes has the potential to influence the behavior of the epidermal itself and to function in the maintenance of physiological homeostasis of the host or to modify the host response to pathological conditions.

Sufficient experience has accumulated to indicate that epidermal secretory activity for a particular effector is regulated by the differentiation state of the keratinocyte. Furthermore, the response of keratinocytes to exogenous effectors is often determined by the state of maturation. Grafted epidermis is being considered as a source for the expression of products for gene therapy, and expression of such products is likely to be modified by the keratinocyte differentiation state. For these reasons, an understanding of the signals which regulate epidermal differentiation is central to a full understanding of epidermal secretory activity.

The discovery that extracellular Ca2+ (Ca2+) regulates many aspects of epidermal differentiation in vitro provided a model in which the major differentiation-specific functions of epidermis could be modified. In this model, cells cultured in medium with Ca2+ between 0.02 and 0.1 mM are phenotypically similar to basal epidermal cells (Fig. 1). Elevation of Ca2+ to >0.1 mM induced a rapid change in biochemistry and morphology in which the cells have many properties of the suprabasal phenotype in vivo (Fig. 1). Such cells become irreversibly committed to terminal differentiation after 48–72 hr of increased Ca2+ and slough from the culture plate as mature squames.

Many aspects of this Ca2+-activated process of epidermal differentiation appear to be physiological. For example, at 1 mM Ca2+, most maturing keratinocytes in vitro express pempnphus antigen, and produce

NOTICE: THIS MATERIAL MAY BE PROTECTED BY COPYRIGHT LAW (TITLE 17, U.S. CODE)
MATURATION STATE

<table>
<thead>
<tr>
<th></th>
<th>IN VIVO</th>
<th>IN VITRO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MARKER</td>
<td>LOW Ca(^{2+})</td>
</tr>
<tr>
<td>Cornified</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cornified cell envelope with γ-glutamyl-lysine bonds</td>
<td></td>
</tr>
<tr>
<td>Granular</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nuclear breakdown</td>
<td></td>
</tr>
<tr>
<td>Spinous</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Keratohyalin granules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filagrin</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cornified envelope precursors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Epidermal transglutaminase</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pemphigus antigen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differentiation specific keratins (K1, K10)</td>
<td></td>
</tr>
<tr>
<td>Basal</td>
<td></td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>Proliferation associated keratins (K5, K14)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pemphigoid antigen</td>
<td>-</td>
</tr>
</tbody>
</table>

FIGURE 1. Schematic depiction of the terminal differentiation of mammalian epidermis in vivo and in vitro. Markers expressed in specific Ca\(^{2+}\) of the culture medium are shown as + or −, but + does not necessarily indicate expression by all cells (see text). Low Ca\(^{2+}\) is 0.02-0.09 mM and high Ca\(^{2+}\) is >0.1 mM.
cornocytes analogous to those of the stratum corneum in vivo. However, only 10–20% of keratinocytes in 1.0 mM Ca\(^{2+}\) express K1 or K10 and filaggrin, markers expressed by most or all suprabasal cells in vivo. Thus Ca\(_a\) may not regulate differentiation in vivo or at least may not be the only signal to regulate the process.

Analysis of Ca\(^{2+}\) content in epidermis in vivo indicates that a Ca\(^{2+}\) gradient exists. Total and free Ca\(^{2+}\) are low in the basal cell and first suprabasal cell layers relative to serum and dermal content. Ca\(^{2+}\) in the granular cell layer is extraordinarily high. The processes by which a tissue can regulate and maintain a Ca\(^{2+}\) gradient are not clear. Nevertheless, the existence of this gradient in the epidermis supports the potential importance of Ca\(_a\) as a physiological regulator of epidermal differentiation in vivo.

Pathways Involved in Ca\(^{2+}\)-induced Epidermal Differentiation

Evidence supporting the validity of the cell culture model to study epidermal differentiation was provided by reports that the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) could induce epidermal differentiation in vivo and in keratinocytes cultured in 0.05 mM Ca\(^{2+}\) medium. Since the biological activities associated with TPA responses are mediated through the activation of protein kinase C, a phospholipid and Ca\(^{2+}\)-dependent enzyme present in virtually all cells of all multicellular organisms, this enzyme would appear to play a role in the differentiation response. A link to the Ca\(^{2+}\) pathway was implicated since the pattern of changes in epidermal protein synthesis and protein phosphorylation which occur within one or two hr after exposure to either Ca\(^{2+}\) or TPA were found to be similar. Additional studies showed that exogenous bacterial phospholipase C and exogenous diacylglycerol could mimic the action of TPA on epidermal differentiation. Together, these results suggested a pathway regulating epidermal differentiation which involves exposure to increasing concentrations of extracellular Ca\(^{2+}\) activating an endogenous phospholipase C, a Ca\(^{2+}\) requiring enzyme.

Phospholipase C activation is associated with the rapid metabolism of cellular phosphatidylinositol (PI) yielding two intracellular second messengers, diacylglycerol and inositol trisphosphate (IP3). Diacylglycerol is the endogenous activator of protein kinase C while IP3 mobilizes intracellular Ca\(^{2+}\) (Ca\(_b\)) from bound stores. To determine if a change in Ca\(_a\) could stimulate PI metabolism by activation of cellular phospholipase C, we prelabeled cultures with \(^{3}H\)inositol in 0.05 mM Ca\(^{2+}\) medium and added Ca\(^{2+}\) to 1 mM. Inositol phosphates (IPs), the water soluble metabolites of phosphatidylinositol, increased within 2 min. There was a corresponding decrease in radiolabeled phosphoinositides suggesting that these were the source of the increased IPs. After 3 hr in 1 mM Ca\(^{2+}\) medium, each of the IPs remained increased to 130–140% of control levels. Two Ca\(^{2+}\) ionophores, A23187 and ionomycin, also increased IP levels in cells maintained in 0.05 mM Ca\(^{2+}\), suggesting that a rise in Ca\(_b\) is important in the increased turnover of phosphatidylinositol. Phorbol esters stimulated phosphatidylcholine metabolism but not phosphatidylinositol turnover. In concert with ionomycin, phorbol esters became more potent inducers of differentiation suggesting that both protein kinase C activation, elevation of Ca\(_a\) and PI turnover were important components of the signal for epidermal differentiation. These results demonstrate that the second messenger system for Ca\(^{2+}\)-mediated keratinocyte differentiation may be through a direct effect on phospholipase C activity.

To assess the Ca\(_a\) response to a change in Ca\(_a\), digital image technology was employed by loading cells with a calcium sensitive probe, Fura 2, and measuring a change in intracellular fluorescence. When Ca\(_a\) is increased from 0.05 mM to 1.2
mM, there is a 10–20-fold increase in Ca\textsubscript{1} which occurs within a few minutes and is sustained for at least 30 min. The magnitude of this response is greatest in the presence of serum, but individual cells show substantial heterogeneity in both time course and magnitude of response. In contrast, serum-free conditions reduce the Ca\textsubscript{1} increase to <5-fold, but the cells respond homogeneously. Serum-free conditions also produce a sustained rise in Ca\textsubscript{1} in response to an increase in Ca\textsubscript{2}. Such results suggest that exogenous factors found in serum could influence the differentiation response in individual cells. Since both Ca\textsubscript{1} and PI metabolism are increased simultaneously by a change in Ca\textsubscript{2} and both are sustained and tightly linked to the differentiation response, a rise in Ca\textsubscript{1} is likely to be an intracellular signal responsible for the induction of terminal differentiation in keratinocytes.

A Specific Ca\textsubscript{1} Regulates the Expression of Certain Differentiation Markers

The sequential expression of differentiation-specific markers is characteristic of the terminal differentiation of the epidermis.29 Keratin markers such as K1 (67 kd) and K10 (59 kd) are expressed early in the differentiation program as cells begin their

<table>
<thead>
<tr>
<th>Marker</th>
<th>Expression at 24 Hr</th>
<th>Expression at 48 Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>K1</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>K10</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Filaggrin</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>CE</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

*Not determined.

maturation in the basal or first suprabasal layer.25,26 Cornified envelope precursors and filaggrin are expressed later as cells enter the granular cell layer27,28 (see Roop et al., in preparation). Monospecific antibodies have been made to unique sequences of K1, K10, filaggrin and the major protein component of the cornified envelope (here called anti-CE). These antibodies were used as probes to study the Ca\textsupscript{2}• requirements for differentiation since they recognize maturation stage dependent markers. Both immunofluorescence analysis of cultured cells and Western blotting of cell extracts were used to evaluate the expression of these markers in cultured cells.

When basal cells grown in 0.05 mM Ca2• were switched to 1.0 mM Ca2•, only 10–15% of cells expressed keratins K1 and K1011 and fewer expressed CE and filaggrin by immunofluorescence analysis. Western blots of such cell extracts do not reproducibly detect K1 and K10 expression. When basal keratinocytes (0.05 mM Ca2•) were switched to 0.10 mM Ca2•, K1 was readily detected on Western blots by 24 hr and K10 staining was intense by 48 hr (TABLE 1). These marker proteins were reduced or not detectable when cells were switched instead to 0.5 mM or 1 mM Ca2•. Western blots using antibodies to detect expression of filaggrin and CE showed a similar requirement for Ca\textsubscript{2}• of approximately 0.1–0.12 mM, although these bands were not seen prior to 48 hr. The expression of these differentiation specific genes diminished at approximately

YUSPA et al.: CONTROL OF KER...

0.2–0.3 mM Ca2•. The number of presence analysis. When transcript message was abundant at 18 hr in 0 1.0 mM for that time. Assuming changes in Ca\textsubscript{2}, the intracellular differentiation phenotype of normal control. These studies also d gradient in vivo for the proper regul.

From our studies, we can conclude inositol lipid metabolism. A primary differentiation could have direct example, patients chronically treat a psoriatic-like skin disease. Chronic levels, but skin levels of inositol ha liferative disease in which keratin seem warranted to assess the possible influence cellular inositol metabol regulators of keratinocyte differential.

In mouse and human epidermis substantially below serum Ca2•, w...Reproduction, 1983. Cell 2 and digital imaging technology re... increase in Ca\textsubscript{2}, and remains elevated the metabolism of phosphatidylinositol glycerol. PI metabolism is also stim...in Ca\textsubscript{2} is directly responsible. The α...actin, an event by Ca\textsubscript{2} and Ca\textsubscript{2} determine the expression in vitro. These findings may ac...maintaining regulated growth and c

1. RHEINWALD, J. G. & H. GREEN. 1
3. ROOP, D. R., P. HAWLEY-NELSON

5. YUSPA, S. H. 1985. In Internat... B. Pullman, P. O. P. T'So & E. I
6. HENNINGS, H., D. MICHAEL, C. C.

8. STANLEY, J. R. & S. H. YUSPA. 19
9. HENNINGS, H. & K. A. HOLBROOK
Certain Differentiation Markers

Specific markers is characteristic of rat keratinocytes such as K1 (67 kDa) and C10 protein levels. The threshold of induction is set when keratinocyte differentiation begins.

<table>
<thead>
<tr>
<th>Culture Medium (mM)</th>
<th>Expression at 48 Hr</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>++</td>
</tr>
</tbody>
</table>

528 Cornified envelope precursors and naural cell layer278 (see Roop et al., in a made to unique sequences of K1, of the cornified envelope (here called + to study the Ca^{2+} requirements for tage dependent markers. Both immuno- western blotting of cell extracts were in cultured cells.

were switched to 1.0 mM Ca^{2+}, only and fewer expressed CE and filaggrin of such cell extracts do not reproduce keratinocytes (0.05 mM Ca^{2+}) were ed on Western blots by 24 hr and K10 marker proteins were reduced or not .5 mM or 1 mM Ca^{2+}. Western blots and CE showed a similar requirement .these bands were not seen prior to 48 ic genes diminished at approximately

0.2–0.3 mM Ca^{2+}. The number of positive cells was greatly increased by immunofluorescence analysis. When transcripts for K1 were analyzed by RNA slot blots, K1 message was abundant at 18 hr in 0.1 mM Ca, but not detectable in cells maintained in 1.0 mM for that time. Assuming these specific changes in Ca_{i} reflect analogous changes in Ca_{o}, the intracellular Ca^{2+} milieu may dictate the expression of the differentiation phenotype of normal keratinocytes and this may be under transcriptional control. These studies also demonstrate the importance of maintaining a Ca^{2+} gradient in vivo for the proper regulation of epidermal homeostasis.

From our studies, we can conclude that one function for Ca_{o} is to control epidermal inositol lipid metabolism. A primary role of inositol lipid metabolism for keratinocyte differentiation could have direct clinical significance for some skin diseases. For example, patients chronically treated with Li^{+} for manic-depressive illness suffer from a psoriatic-like skin disease. Chronic Li^{+} treatment causes a decrease in brain inositol levels, but skin levels of inositol have not been examined.225 Psoriasis is a hyperproliferative disease in which keratinocyte differentiation is impaired. Further studies seem warranted to assess the possible relationship between agents which are known to influence cellular inositol metabolism and impaired responsiveness to endogenous regulators of keratinocyte differentiation.

SUMMARY

In mouse and human epidermis, the Ca^{2+} environment of the basal cell layer is substantially below serum Ca^{2+}, while that of the granular cell layer is unusually high. Reduction of extracellular Ca^{2+} concentration (Ca_{o}) in the medium of keratinocyte cultures maintains a basal cell phenotype while serum Ca^{2+} concentrations induce terminal differentiation. Measurements of intracellular Ca^{2+} (Ca_{i}) by the use of Fura 2 and digital imaging technology reveal that Ca_{i} increases 10–20-fold in response to an increase in Ca_{o} and remains elevated. Concomitant with the rise in Ca_{i} is an increase in the metabolism of phosphatidylinositol (PI) to yield inositol phosphates and diacylglycerol. PI metabolism is also stimulated by calcium ionophores suggesting that a rise in Ca_{i} is directly responsible. The consequent increase in diacylglycerol and Ca_{i} would activate protein kinase C, an event known to trigger epidermal differentiation. Specific Ca_{o} and Ca_{i} determine the expression of individual markers of keratinocyte differentiation in vitro. These findings may account for the importance of the Ca^{2+} gradient for maintaining regulated growth and differentiation of the epidermis in vivo.

REFERENCES

ANNALS NEW YORK ACADEMY OF SCIENCES

Structure and Inhibitory Ei

KJELL ELGIG

Pediatrics

The epidermal thickness is different species to another. But for a given remarkably constant throughout observation is that the cells that an equal number of new cells. This register quantitatively the need for this type is best explained in terms from already desquamated cells is. Most available in vivo data in vivo renewal basically works according regulation could involve a large production of one or more mitosis which they act. In such a system, corresponding fall in inhibitor concentrations production.

Earlier experiments have shown reversibly inhibit epidermal cell proliferation. Such extracts indicated that prolife phases in the cell cycle, and that such experiments cannot, however, and we therefore started a series of inhibitor(s).

Purification Procedures

Water extracts of mouse skin starting material. After trying different procedures were best suitable for preparation: Dowex 1; Fractogel MG 2000, rechromatography of the active fraction tested for possible effects on mous Colcemid. These purification steps used Glu-Glu-Ser-GlyOH, and Glu-C made with the pentapeptide.