Long-Range Polymerase Chain Reaction for Specific Full-Length Amplification of the Human Keratin 14 Gene and Novel Keratin 14 Mutations in Epidermolysis Bullosa Simplex Patients

To the Editor:

Epidermolysis bullosa simplex (EBS) is an autosomal dominant genetic skin disorder characterized by intraepidermal blistering in response to mild physical trauma (Irvine and McLean, 1999). In EBS, histologic and/or ultrastructural examination shows that blistering occurs in the subnuclear cytoplasm of basal keratinocytes. The disorder can be subdivided into three subgroups depending on the severity of the disease (Fine et al, 2000). The EBS Dowling–Meara variant is the most severe variant with widespread herpetiform blistering occurring within the first week following birth. EBS Weber–Cockayne and EBS Köbner are milder forms of the disease where blistering is mainly localized to hands and feet. These forms of EBS are predominantly caused by dominant-negative mutations, either missense or small in-frame insertion–deletion mutations, in keratin 5 (K5) or K14 (Irvine and McLean, 1999). K5 and K14 polymerize to form the intermediate filament cytoskeleton of basal keratinocytes (Coulobe and Omary, 2002). Structural weakening of this cytoskeletal system due to genetic mutations leads to fragility of basal keratinocytes and therefore to hereditary skin blistering.

Mutation detection strategies for the K5 gene (KRT5) have been described previously (Stephens et al, 1997; Whittock et al, 2000) but reliable mutation detection for the K14 gene (KRT14) has proved to be more difficult due to the presence of pseudogenes. One intron–containing pseudogene for K14 was reported some time ago (Savchenko et al, 1988); however, a more recent survey of the emerging human genome data reported a second partial pseudogene for K14 (Hesse et al, 1998). Multiple pseudogenes (Hesse et al, 1998) and their pseudogene(s) involved restriction digestion of genomic DNA (Hut et al, 2000). Here, we present a robust long-range PCR method that specifically amplifies the whole of the K14 gene from genomic DNA. This allows sequencing of the entire K14 gene from one PCR product using internal primers. Using this method, we have identified three novel mutations in K14 in EBS patients.

The reported K14 genomic sequence was used for homology searching of the April 2002 version of the human genome sequence, via the UCSC website (http://genome.ucsc.edu). This revealed two full-length intron–containing pseudogenes, which were 94.9% and 94.8% identical to the functional gene. This was consistent with the recent survey of the keratin genes in the emerging genome data (Hesse et al, 2001). These pseudogenes appear to be located several megabases of DNA centromeric to the type I keratin gene cluster on chromosome 17, assuming the current genome assembly to be correct in this region (data not shown). Alignment of the flanking regions of the K14 gene and its two pseudogenes identified a number of places where primers might be placed to specifically amplify the functional gene. A number of these were tested for ease of amplification and specificity, of which the following primers and conditions were found to be optimal. Forward primer K14sp2 (5′-ATT TCA GGG ATG GGA CAG AC-3′) and reverse primer K14spr2 (5′-GAG GGG ATC TTC CAG TGG GAT CT-3′) were used in 50 μl reactions containing 100 ng genomic DNA, 2 μg per ml each primer, 250 μM of each dNTP and Expand Long Template PCR system, 0.2 μl Long Template enzyme mix, and Long Template reaction buffer 1 (Roche Diagnostics, Lewes, U.K.). A “touchdown” PCR program was used. The PCRs were initially denatured at 94°C for 2 min followed by 94°C 30 s, 62°C 30 s, 72°C 4 min for two cycles; then 94°C 30 s, 60°C 30 s, 72°C 4 min for two cycles; then 94°C 30 s, 59°C 30 s, 72°C 4 min for 25 cycles; followed by 72°C for 5 min. PCR was performed in a computer-controlled Thermoshift MBS thermocycler with heated lid, without use of mineral oil. Simulated tube control with a 50 μl volume setting were used for the PCR program within the MBS software.

The resultant 5099 bp PCR product (Fig 1) spans all of the KRT14 gene including 624 bp upstream of the initiation codon ATG of K14 and 69 bp downstream of the TGA codon. Using this method we identified three novel EBS mutations found at either end of the K14 gene, by sequencing with internal primers (Fig 1). Two mutations, R148C and S128del, were found in the IA domain, encoded by exon 1 of KRT14. The third mutation, R146P, was found in the helix termination motif at the end of the 2B domain, encoded by exon 6 (Fig 1). The mutations were confirmed by tryptophan and tested PCRs specific for the individual exons concerned, exons 1 and 6 (Shemanko et al, 1998). The same mutations were found by sequencing of these fragments (data not shown). Mutation R148C creates a novel Bgl II site, S128del ablates an Mnl I site, and R146P destroys an Fnu4H I site. All three novel mutations were excluded from 50 normal ethnically matched controls by the appropriate restriction digests (data not shown). Mutations S128del and R146P are located in the helix initiation and termination motifs of K14, respectively. These are known mutation hotspots for EBS Dowling–Meara (Irvine and McLean, 1999), consistent with the observed phenotypes of these two patients. Mutation R148C is located in the second half of the IA domain, a known hotspot associated with milder phenotypes (Irvine and McLean, 1999), consistent with the diagnosis of EBS Weber–Cockayne in the patient examined here. Clinical details of these patients will be reported elsewhere.

Avoiding pseudogene amplification is a particular problem in the molecular diagnosis of keratin disorders as many keratins have multiple pseudogenes. A recent survey of the human genome revealed that, of >250 intermediate filament genes, about 75% are keratin–related pseudogenes (Hesse et al, 2001). The problem is particularly prominent in diagnosis of the two most common types of pachyonychia congenita (PC), where the PC-1 phenotype is caused by mutations in K6a or K16 and the PC-2 variant

0022-202X/03/$15.00 · Copyright © 2003 by The Society for Investigative Dermatology, Inc.
developed robust long-range PCR strategies to enable mutation screening for all coding regions of the K6a, K16, and K17 genes (Smith et al., 1999a; 1999b; Terrinoni et al., 2001), thus enabling mutation detection and prenatal diagnosis based on genomic DNA. Similarly, the long-range PCR strategy described here is suitable for detection of mutations in all exons of the K14 gene, circumventing the need for enzyme digestion of PCR fragments or calibration of specific PCR for each of the individual exons. A further advantage of this system is that it may detect larger heterozygous genomic deletions, say involving one or two exons, that would be missed by PCR of individual exons. For example, a homozygous 1163 bp intragenic deletion mutation was recently reported in the ECM1 gene in a lipoid proteinosis family (Hamada et al., 2002). A similar mutation would be missed in heterozygotes by PCR of individual exons but would be detected by the method described here. Therefore, the long-range PCR method should be considered for other genes where there is no particular pseudogene problem but where a group of patients exists that lack mutations. The only drawback that we have observed in application of this methodology is that DNA samples that are partially degraded can be more difficult to amplify for obvious reasons; however, peripheral blood lymphocyte DNA and mouthwash DNA samples prepared in our laboratory by a standard high-salt extraction method generally work well.

In conclusion, the method described here should ease the molecular diagnosis of EBS in the routine laboratory and perhaps identify mutations missed by other strategies.

Figure 1. Long-range PCR to detect novel KRT14 mutations in EBS patients. (a) PCR amplification of a 5.1 kb genomic DNA fragment containing all exons and flanking regions of the functional KRT14 gene analyzed on a 1% agarose/0.5 x TBE gel. Lane 1, molecular weight markers (Hyperladder I, Bioline, London, U.K.), the arrow indicates 5 kb marker; lane 2, typical PCR product amplified from a normal control DNA; lane 3, negative control showing no amplification. (b)–(g) Direct sequencing of KRT14 long-range PCR products with internal primers. Sequences shown in panels e, f, and g were generated with sequencing primer K14pm20 (+ strand, 5′ GGG GGA GCC TAT GGG TTG GGG 3′). Sequences shown in panels c and d were generated with sequencing primer KHpm20 (+ strand, 5′ CAG AGC GGC AAG AGC GAG AT 3′). (a) Normal control sequence from exon 1, showing codons 126–130. A CCT repeat is present in this region of the gene (boxed). (b) The same region as shown in (b) derived from a patient with EBS Dowling–Meara, showing heterozygous deletion mutation 383delCCT, predicting the amino acid change R416P in the helix termination motif of the K14 polypeptide. This is a known mutation hotspot associated with milder EBS phenotypes. (c) The same region as shown in (d) but the second CCT is deleted, leading to overlapping sequence traces. This mutation occurs in a known hotspot associated with severe EBS phenotypes. (d) Normal control sequence from exon 1, showing codons 126–130. (e) Normal control sequence from exon 6, showing codons 414–418. (f) The same region as shown in (d) derived from a patient with EBS Weber–Cockayne, showing heterogeneous transition mutation 442C→T, predicting the amino acid change R148C in the latter half of the 1A domain of the K14 polypeptide. This is a known mutation hotspot associated with milder EBS phenotypes. (g) The same region as shown in (e) derived from a patient with EBS Dowling–Meara, showing heterogeneous transversion mutation 1247G→C, predicting the amino acid change R416P in the helix termination motif of the K14 polypeptide. This is a known mutation hotspot associated with more severe EBS phenotypes.

is caused by mutations in K6b or K17. Humans possess at least six homologous K6-like isogenes and/or pseudogenes (Takahashi et al., 1995). K16 and K17 each have two pseudogenes (Troyanovsky et al., 1992; Smith et al., 1999a). Over the last few years, we have developed robust long-range PCR strategies to enable mutation detection and prenatal diagnosis based on genomic DNA. Similarly, the long-range PCR strategy described here is suitable for detection of mutations in all exons of the K14 gene, circumventing the need for enzyme digestion of PCR fragments or calibration of specific PCR for each of the individual exons. A further advantage of this system is that it may detect larger heterozygous genomic deletions, say involving one or two exons, that would be missed by PCR of individual exons. For example, a homozygous 1163 bp intragenic deletion mutation was recently reported in the ECM1 gene in a lipoid proteinosis family (Hamada et al., 2002). A similar mutation would be missed in heterozygotes by PCR of individual exons but would be detected by the method described here. Therefore, the long-range PCR method should be considered for other genes where there is no particular pseudogene problem but where a group of patients exists that lack mutations. The only drawback that we have observed in application of this methodology is that DNA samples that are partially degraded can be more difficult to amplify for obvious reasons; however, peripheral blood lymphocyte DNA and mouthwash DNA samples prepared in our laboratory by a standard high-salt extraction method generally work well.

In conclusion, the method described here should ease the molecular diagnosis of EBS in the routine laboratory and perhaps identify mutations missed by other strategies.

REFERENCES

Hut PH, v d Vlies P, Jonkman MF, Verlink E, Shimizu H, Bays CH, Schueffer H: Exempting homologous pseudogene sequences from polymerase chain

Pamela Wood, David U. Baty,* E. Birgitte Lane,† and W. H. Irwin McLean

Epithelial Genetics Group, Human Genetics Unit, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee, U.K., *Molecular Genetics Laboratory, Tayside University Hospitals NHS Trust, Ninewells Hospital, Dundee, U.K., and †Cancer Research UK Cell Structure Research Group, Division of Cell and Developmental Biology, MSL/WTB Complex, School of Life Sciences, University of Dundee, U.K.

Thanks to the following clinicians who provided material for this study: Dr. M. J. Tidman, Edinburgh Royal Infirmary; Dr. S. Natanian, Sunderland Royal Hospital; Mr. J. Denyer, Great Ormond Street Hospital, London. Thanks also to Andrew J. Cassidy, DNA Analysis Facility, Department of Molecular and Cellular Pathology, Ninewells Medical School, Dundee, for DNA sequencing. PW is supported by a Medical Research Council PhD Studentship and WHIM by a Wellcome Trust Senior Research Fellowship. This work was also supported by grants from The Dysrophic Epidermolysis Bullosa Research Association (DEBRA) (to WHIM and EBL) and a Cancer Research UK programme grant to EBL (C26/A1461).